Add intensity step correction
- Finished curve correction - Add intensity correction for each x
This commit is contained in:
parent
2840f86646
commit
15325e0e8f
1 changed files with 281 additions and 233 deletions
84
ETA.py
84
ETA.py
|
@ -1,6 +1,9 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import utils
|
||||
import sys
|
||||
import pathlib
|
||||
import shelve
|
||||
from scipy.signal import convolve as sp_convolve
|
||||
from scipy.signal import find_peaks
|
||||
from scipy.ndimage import rotate
|
||||
|
@ -9,6 +12,14 @@ if len( sys.argv ) < 2:
|
|||
raise Exception( 'this command must have a filename of an ETA fits as an argument' )
|
||||
data = utils.load( sys.argv[1] )
|
||||
|
||||
cache_file = pathlib.Path( 'asset/points_' + sys.argv[1].split( '/' )[-1][:-5] + '.pag' )
|
||||
|
||||
if cache_file.is_file():
|
||||
with shelve.open( str( cache_file ) ) as cache:
|
||||
data = cache[ 'rotated_data' ]
|
||||
border = cache[ 'border' ]
|
||||
calibrations = cache[ 'calibrations' ]
|
||||
else:
|
||||
"""
|
||||
find fill points
|
||||
"""
|
||||
|
@ -224,7 +235,7 @@ def indicator( list_ ):
|
|||
return 4
|
||||
return 10
|
||||
|
||||
indicators = np.array( [ indicator( data[ i , border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ] ] ) for i in range( border[ 'y' ][ 'min' ] , border[ 'y' ][ 'max' ] , 1 ) ] )
|
||||
indicators = np.array( [ indicator( data[ i , border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ] ].copy() ) for i in range( border[ 'y' ][ 'min' ] , border[ 'y' ][ 'max' ] , 1 ) ] )
|
||||
|
||||
calibration_areas = utils.consecutive( np.where( indicators == 10 )[0] )
|
||||
calibration_sizes = [ len( calibration_area ) for calibration_area in calibration_areas ]
|
||||
|
@ -253,36 +264,73 @@ calibrations = {
|
|||
},
|
||||
}
|
||||
|
||||
with shelve.open( str( cache_file ) ) as cache:
|
||||
cache[ 'rotated_data' ] = data
|
||||
cache[ 'border' ] = border
|
||||
cache[ 'calibrations'] = calibrations
|
||||
|
||||
"""
|
||||
stripes curves detection
|
||||
"""
|
||||
|
||||
list_ = data[
|
||||
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
|
||||
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
||||
].copy()
|
||||
list_ -= np.min( list_ , axis = 0 )
|
||||
list_ /= np.max( list_ , axis = 0 )
|
||||
size = list_.shape[1]
|
||||
|
||||
size = border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
|
||||
x_stripe = np.arange( border[ 'x' ][ 'min' ] + 1 * size // 4 , border[ 'x' ][ 'min' ] + 3 * size // 4 , 1 ).astype( int )
|
||||
y_stripe = np.array( [
|
||||
np.where(
|
||||
list_[ : , x ] > 0.8
|
||||
)[0][0] for x in x_stripe
|
||||
] )
|
||||
y_stripe = np.argmax( list_ , axis = 0 )
|
||||
good_x = np.where( y_stripe < 2 * np.mean( y_stripe ) )[0]
|
||||
x_stripe = np.arange( 0 , size , 1 ).astype( int )[ good_x ]
|
||||
y_stripe = y_stripe[ good_x ]
|
||||
|
||||
stripes = [ # list of polyval result for each stripe
|
||||
np.polyfit( x_stripe , y_stripe , 2 )
|
||||
np.polyfit( x_stripe , y_stripe , 3 )
|
||||
]
|
||||
|
||||
# First deformation
|
||||
y_diff = np.polyval( stripes[0] , np.arange( 0 , size , 1 ) ).astype( int )
|
||||
results = np.zeros( ( list_.shape[1] , list_.shape[0] - np.max( y_diff ) ) )
|
||||
for i in range( list_.shape[1] ):
|
||||
results[i] = list_[ y_diff[ i ] : list_.shape[0] + y_diff[ i ] - np.max( y_diff ) , i ]
|
||||
results = results.transpose()
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.imshow( results )
|
||||
plt.savefig( 'asset/deformation.png' )
|
||||
y_diff = ( np.polyval( stripes[0] , np.arange( 0 , size , 1 ) ) ).astype( int )
|
||||
y_diff[ np.where( y_diff < 0 ) ] = 0
|
||||
results = np.zeros( ( list_.shape[0] + np.max( y_diff ) , list_.shape[1] ) )
|
||||
for i in range( list_.shape[1] ):
|
||||
results[ : , i ] = np.concatenate( ( np.zeros( np.max( y_diff ) - y_diff[ i ] ) , list_[ : , i ] , np.zeros( y_diff[i] ) ) )
|
||||
|
||||
list_results = np.convolve(
|
||||
np.gradient(
|
||||
np.mean( results , axis = 1 ),
|
||||
) ,
|
||||
np.ones( 50 ),
|
||||
'same' ,
|
||||
)
|
||||
|
||||
fall = utils.consecutive( np.where( list_results < - 0.02 )[0] )
|
||||
fall = np.array( [
|
||||
np.argmax( list_results )
|
||||
] + [
|
||||
consecutive[0] + np.argmin(
|
||||
list_results[ consecutive[0] : consecutive[-1] ]
|
||||
) for consecutive in fall
|
||||
] ).astype( int )
|
||||
|
||||
"""
|
||||
plt.imshow( results , aspect = 'auto' )
|
||||
plt.hlines( fall , 0 , size )
|
||||
plt.show()
|
||||
"""
|
||||
|
||||
temp = np.convolve( results[ : , 10000 ] , np.ones( 50 ) , 'same' )
|
||||
for i in range( len( fall ) - 1 ):
|
||||
temp[ fall[ i ] : fall[ i + 1 ] ] = np.mean( temp[ fall[ i ] : fall[ i + 1 ] ] )
|
||||
|
||||
plt.plot( temp )
|
||||
plt.plot(
|
||||
np.convolve(
|
||||
results[ : , 10000 ],
|
||||
np.ones( 50 ) ,
|
||||
'same' ,
|
||||
),
|
||||
)
|
||||
plt.vlines( fall , 0 , 50 , colors = 'red' )
|
||||
plt.show()
|
||||
|
|
Loading…
Reference in a new issue