Update to use wavelength_calibration
This commit is contained in:
parent
f3e62bfca3
commit
4e54a1b433
1 changed files with 44 additions and 25 deletions
69
ETA.py
69
ETA.py
|
@ -384,39 +384,58 @@ else:
|
|||
# Calibration
|
||||
|
||||
if calibration != None:
|
||||
calib_peaks = np.loadtxt( calibration )
|
||||
mean_calib_up = np.mean( data[
|
||||
import wavelength_calibration as wave_calib
|
||||
peaks_calib = np.loadtxt( calibration ) # sorted list
|
||||
peaks_calib = np.sort( peaks_calib )
|
||||
mean_up = np.mean( data[
|
||||
calibrations[ 'top' ][ 'y' ][ 'min' ] : calibrations[ 'top' ][ 'y' ][ 'max' ],
|
||||
calibrations[ 'top' ][ 'x' ][ 'min' ] : calibrations[ 'top' ][ 'x' ][ 'max' ]
|
||||
] , axis = 0 )
|
||||
mean_calib_up -= np.min( mean_calib_up )
|
||||
mean_calib_up /= np.max( mean_calib_up )
|
||||
peaks_up = np.array(
|
||||
utils.retrieve_peaks(
|
||||
mean_up ,
|
||||
window_size = 1 ,
|
||||
max_window_size = 1,
|
||||
)
|
||||
).astype( int )
|
||||
|
||||
peaks_up = find_peaks( mean_calib_up , height = 0.5 )[0] + calibrations[ 'top' ][ 'x' ][ 'min' ]
|
||||
diff = np.array( [ np.inf ] )
|
||||
polyval = np.polyfit( peaks_up[ : len( calib_peaks ) ] , calib_peaks[ : len( peaks_up ) ] , 1 )
|
||||
peakless_up = wave_calib.remove_peaks( mean_up , peaks_up )
|
||||
calib = { # hard-coded for now
|
||||
'first': 3 ,
|
||||
'last': 20,
|
||||
}
|
||||
first , last = wave_calib.get_extremities( peakless_up , peaks_up , mean_up )
|
||||
up = {
|
||||
'first': first,
|
||||
'last' : last ,
|
||||
}
|
||||
peaks_up = peaks_up[ up[ 'first' ] : up[ 'last' ] + 1 ]
|
||||
peaks_calib = peaks_calib[ calib[ 'first' ] : calib[ 'last' ] + 1 ]
|
||||
|
||||
while np.max( diff ) > 1000: # we do not have the exact same number of peak (and the same peaks) in calibration model
|
||||
diff = abs( np.polyval( polyval , peaks_up[ : len( calib_peaks ) ] ) - calib_peaks[ : len( peaks_up ) ] )
|
||||
point_to_delete = np.argmax( diff ) # get the "worst" point
|
||||
peaks_up_new = np.delete( peaks_up , [ point_to_delete ] ) # remove from data value ( other peak detected )
|
||||
calib_peaks_new = np.delete( calib_peaks , [ point_to_delete ] ) # remove from model ( peak not detected )
|
||||
peaks_up = wave_calib.only_keep_calib( peaks_up , peaks_calib )
|
||||
|
||||
polyfull_up = np.polyfit( peaks_up_new[ : len( calib_peaks ) ] , calib_peaks[ : len( peaks_up_new ) ] , 1 , full = True )
|
||||
polyfull_calib = np.polyfit( peaks_up[ : len( calib_peaks_new ) ] , calib_peaks_new[ : len( peaks_up ) ] , 1 , full = True )
|
||||
polyval_wavelength = np.polyfit( # x = 0 begins at the start of
|
||||
peaks_up , # calibartions[ 'top' ][ 'x' ][ 'min' ]
|
||||
peaks_calib,
|
||||
1 ,
|
||||
)
|
||||
|
||||
if polyfull_up[ 1 ][ 0 ] < polyfull_calib[ 1 ][ 0 ]: # which one is a better fit ?
|
||||
peaks_up = peaks_up_new
|
||||
polyval = polyfull_up[ 0 ]
|
||||
else:
|
||||
calib_peaks = calib_peaks_new
|
||||
polyval = polyfull_calib[ 0 ]
|
||||
wavelength = np.polyval(
|
||||
polyval_wavelength,
|
||||
np.arange(
|
||||
0 ,
|
||||
len( mean_up ),
|
||||
1 ,
|
||||
)
|
||||
)
|
||||
|
||||
x = np.arange( calibrations[ 'top' ][ 'x' ][ 'min' ] , calibrations[ 'top' ][ 'x' ][ 'max' ] , 1 )
|
||||
x = np.polyval( polyval , x )
|
||||
|
||||
plt.margins( x = 0 )
|
||||
plt.plot( x , mean_calib_up )
|
||||
plt.plot(
|
||||
peaks_up,
|
||||
peaks_calib - np.polyval(
|
||||
polyval_wavelength,
|
||||
peaks_up ,
|
||||
) ,
|
||||
)
|
||||
plt.show()
|
||||
exit()
|
||||
|
||||
|
|
Loading…
Reference in a new issue