Add bias substraction after wavelength calibration
This commit is contained in:
parent
32403fdce4
commit
78c02df9af
1 changed files with 30 additions and 28 deletions
58
spectrum.py
58
spectrum.py
|
@ -531,40 +531,42 @@ if calibration != None:
|
||||||
|
|
||||||
wavelengths = np.polyval( wavelength_polyval , abciss )
|
wavelengths = np.polyval( wavelength_polyval , abciss )
|
||||||
|
|
||||||
"""
|
|
||||||
mean_up = np.mean( data[
|
|
||||||
calibrations[ 'top' ][ 'y' ][ 'min' ] : calibrations[ 'top' ][ 'y' ][ 'max' ],
|
|
||||||
calibrations[ 'top' ][ 'x' ][ 'min' ] : claibrations[ 'top' ][ 'x' ][ 'max' ]
|
|
||||||
] , axis = 0 )
|
|
||||||
mean_up = np.mean( data[
|
|
||||||
calibrations[ 'down' ][ 'y' ][ 'min' ] : calibrations[ 'down' ][ 'y' ][ 'max' ],
|
|
||||||
calibrations[ 'down' ][ 'x' ][ 'min' ] : claibrations[ 'down' ][ 'x' ][ 'max' ]
|
|
||||||
] , axis = 0 )
|
|
||||||
peaks_up = np.array(
|
|
||||||
utils.retrieve_peaks(
|
|
||||||
mean_up ,
|
|
||||||
window_size = 1 ,
|
|
||||||
max_window_size = 1,
|
|
||||||
) ,
|
|
||||||
dtype = int,
|
|
||||||
)
|
|
||||||
peaks_down = np.array(
|
|
||||||
utils.retrieve_peaks(
|
|
||||||
mean_down ,
|
|
||||||
window_size = 1 ,
|
|
||||||
max_window_size = 1,
|
|
||||||
) ,
|
|
||||||
dtype = int,
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print( 'wavelength calibration finished' )
|
print( 'wavelength calibration finished' )
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print( 'starting bias substraction' )
|
||||||
|
|
||||||
|
bias = {
|
||||||
|
'top': np.mean(
|
||||||
|
data[
|
||||||
|
calibrations[ 'top' ][ 'y' ][ 'min' ] - 100 :
|
||||||
|
calibrations[ 'top' ][ 'y' ][ 'min' ] ,
|
||||||
|
calibrations[ 'top' ][ 'x' ][ 'min' ] :
|
||||||
|
calibrations[ 'top' ][ 'x' ][ 'max' ]
|
||||||
|
] ,
|
||||||
|
axis = 0,
|
||||||
|
),
|
||||||
|
'down': np.mean(
|
||||||
|
data[
|
||||||
|
calibrations[ 'down' ][ 'y' ][ 'max' ] :
|
||||||
|
calibrations[ 'down' ][ 'y' ][ 'max' ] + 100,
|
||||||
|
calibrations[ 'down' ][ 'x' ][ 'min' ] :
|
||||||
|
calibrations[ 'down' ][ 'x' ][ 'max' ]
|
||||||
|
] ,
|
||||||
|
axis = 0,
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
mean_bias = np.mean( [ bias[ 'top' ] , bias[ 'down' ] ] , axis = 0 )
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print( 'bias substraction finished' )
|
||||||
|
|
||||||
mean_data = np.mean( data[
|
mean_data = np.mean( data[
|
||||||
spectrum[ 'y' ][ 'min' ] : spectrum[ 'y' ][ 'max' ],
|
spectrum[ 'y' ][ 'min' ] : spectrum[ 'y' ][ 'max' ],
|
||||||
spectrum[ 'x' ][ 'min' ] : spectrum[ 'x' ][ 'max' ]
|
spectrum[ 'x' ][ 'min' ] : spectrum[ 'x' ][ 'max' ]
|
||||||
] , axis = 0 )
|
] , axis = 0 ) - mean_bias
|
||||||
|
|
||||||
if intensity != None:
|
if intensity != None:
|
||||||
if verbose:
|
if verbose:
|
||||||
|
|
Loading…
Reference in a new issue