Update label detection method
- Remove old label detection code and dependancy to scipy - Add quick label detection method without dependancies
This commit is contained in:
parent
ba1a591669
commit
a240bf83e8
1 changed files with 62 additions and 69 deletions
121
ETA.py
121
ETA.py
|
@ -1,8 +1,9 @@
|
|||
import numpy as np
|
||||
from scipy.optimize import curve_fit
|
||||
import utils
|
||||
import sys
|
||||
|
||||
if len( sys.argv ) < 2:
|
||||
raise Exception( 'this command must have a filename of an ETA fits as an argument' )
|
||||
data = utils.load( sys.argv[1] )
|
||||
|
||||
"""
|
||||
|
@ -55,8 +56,25 @@ fill data
|
|||
|
||||
extremum = []
|
||||
for point in points:
|
||||
if point[0] < points[2][0]:
|
||||
point[0] = points[2][0]
|
||||
if point[1] < points[0][1]:
|
||||
point[1] = points[0][1]
|
||||
taken_points = utils.small_to_big(
|
||||
utils.fill( small_data , point , 1000 ),
|
||||
np.array( [
|
||||
points[2][0],
|
||||
points[0][1],
|
||||
] ) + utils.fill(
|
||||
small_data[
|
||||
points[2][0] : points[3][0] + 1,
|
||||
points[0][1] : points[1][1] + 1
|
||||
],
|
||||
[
|
||||
point[0] - points[2][0],
|
||||
point[1] - points[0][1],
|
||||
],
|
||||
1000
|
||||
),
|
||||
5
|
||||
)
|
||||
extremum.append( [
|
||||
|
@ -68,12 +86,12 @@ for point in points:
|
|||
|
||||
border = {
|
||||
'x': {
|
||||
'min': extremum[0][1] + 1,
|
||||
'max': extremum[1][0] ,
|
||||
'min': points[0][1] + extremum[0][1] + 1,
|
||||
'max': points[0][1] + extremum[1][0] ,
|
||||
},
|
||||
'y': {
|
||||
'min': extremum[2][3] + 1,
|
||||
'max': extremum[3][2] ,
|
||||
'min': points[2][0] + extremum[2][3] + 1,
|
||||
'max': points[2][0] + extremum[3][2] ,
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -81,72 +99,47 @@ border = {
|
|||
label deletion
|
||||
"""
|
||||
|
||||
mean_data = np.mean( data[
|
||||
mean_data = np.convolve(
|
||||
np.gradient(
|
||||
np.mean(
|
||||
data[
|
||||
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
||||
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
||||
] , axis = 0 )
|
||||
|
||||
gauss = lambda x , sigma , mu , a , b : a * (
|
||||
1 / sigma * np.sqrt(
|
||||
2 * np.pi
|
||||
) * np.exp(
|
||||
- ( x - mu ) ** 2 / ( 2 * sigma ** 2 )
|
||||
)
|
||||
) + b
|
||||
abciss = np.arange(
|
||||
border['x']['min'],
|
||||
border['x']['max'],
|
||||
1
|
||||
)
|
||||
guess_params = [
|
||||
1 ,
|
||||
border['x']['min'] + ( border['x']['max'] - border['x']['min'] ) // 2,
|
||||
np.max( mean_data ) ,
|
||||
np.min( mean_data ) ,
|
||||
]
|
||||
|
||||
first_estimate = curve_fit(
|
||||
gauss ,
|
||||
abciss ,
|
||||
mean_data ,
|
||||
guess_params
|
||||
)[0]
|
||||
|
||||
part_data = [
|
||||
mean_data[ : mean_data.shape[0] // 2 ],
|
||||
mean_data[ mean_data.shape[0] // 2 : ]
|
||||
]
|
||||
part_abciss = [
|
||||
abciss[ : abciss.shape[0] // 2 ],
|
||||
abciss[ abciss.shape[0] // 2 : ]
|
||||
]
|
||||
part_result = []
|
||||
for i in range( 2 ):
|
||||
part_result.append(
|
||||
curve_fit(
|
||||
gauss ,
|
||||
part_abciss[i],
|
||||
part_data[i] ,
|
||||
first_estimate
|
||||
],
|
||||
axis = 0
|
||||
)
|
||||
),
|
||||
np.ones(
|
||||
int( 0.01 * (
|
||||
border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
|
||||
) )
|
||||
),
|
||||
'same'
|
||||
)
|
||||
|
||||
cov = np.array( [
|
||||
np.sum( np.diag( part_result[i][1] ) ) for i in range( 2 )
|
||||
] )
|
||||
i = np.argmax( cov ) # part where the label is
|
||||
mean_data -= np.min( mean_data )
|
||||
mean_data /= np.max( mean_data )
|
||||
|
||||
derivee = np.convolve(
|
||||
np.gradient( part_data[i] ),
|
||||
np.ones( part_data[i].shape[0] // 100 ),
|
||||
'same',
|
||||
)
|
||||
start_label = np.argmax( derivee )
|
||||
end_label = np.argmin( derivee[ start_label :: ( - 1 ) ** i ] )
|
||||
top = utils.consecutive( np.where( mean_data > 0.75 )[0] )
|
||||
down = utils.consecutive( np.where( mean_data < 0.25 )[0] )
|
||||
|
||||
keys = [ 'min' , 'max' ]
|
||||
size_top = [ len( list_ ) for list_ in top ]
|
||||
size_down = [ len( list_ ) for list_ in down ]
|
||||
|
||||
border['x'][keys[i]] += ( - 1 ) ** i * ( start_label + end_label )
|
||||
label_x = {
|
||||
'min': border[ 'x' ][ 'min' ] + top[ np.argmax( size_top ) ][0] ,
|
||||
'max': border[ 'x' ][ 'min' ] + down[ np.argmax( size_down ) ][-1]
|
||||
}
|
||||
|
||||
if label_x[ 'min' ] < data.shape[1] // 2:
|
||||
if label_x[ 'max' ] < data.shape[1] // 2:
|
||||
border[ 'x' ][ 'min' ] = label_x[ 'max' ]
|
||||
else:
|
||||
raise Exception( 'the label seems to be in the middle of the picture' )
|
||||
elif label_x[ 'max' ] > data.shape[1] // 2:
|
||||
border[ 'x' ][ 'max' ] = label_x[ 'min' ]
|
||||
else:
|
||||
raise Exception( 'for an unkown reason, label_x[ \'min\' ] > label_x[ \'max\' ]' )
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.imshow( data[
|
||||
|
|
Loading…
Reference in a new issue