Add auto calibration based on peakless signal

This commit is contained in:
linarphy 2023-05-23 14:35:21 +02:00
parent 3d90b03a6d
commit bf40d1db67
No known key found for this signature in database
GPG key ID: 3D4AAAC3AD16E79C

View file

@ -13,20 +13,109 @@ reference = np.load( 'asset/reference.npy' )
mean_calib_top = np.mean( calib_top , axis = 0 )
mean_calib_down = np.mean( calib_down , axis = 0 )
peaks_calib_top = utils.retrieve_peaks( mean_calib_top )
peaks_reference = utils.retrieve_peaks( reference[1] , window_size = 1 , max_window_size = 1 )
polyval = np.polyfit( peaks_calib_top , peaks_reference[ 2 : ] , 1 )
peaks_values = [ reference[ 1 , i ] for i in np.array( peaks_reference ).astype( int ) ]
sorting = np.argsort( peaks_values )[ :: -1 ]
wavelength = [ reference[ 0 , i ] for i in np.array( [ peaks_reference[ j ] for j in sorting ] ).astype( int ) ]
polyval_wavelength = np.polyfit( peaks_reference , np.sort( wavelength ) , 1 )
wavelength = np.polyval( polyval_wavelength , np.polyval( polyval , np.arange( 0 , len( mean_calib_top ) , 1 ) ) )
peaks_calib_top = np.array(
utils.retrieve_peaks( mean_calib_top )
).astype( int )
peaks_reference = np.array(
utils.retrieve_peaks(
reference[1] ,
window_size = 1 ,
max_window_size = 1,
)
).astype( int )
"""
Signal without peaks
"""
peakless_calib_top = mean_calib_top.copy()
for peak in peaks_calib_top:
first = peak
peak , old = first - 2 , first - 1
while peakless_calib_top[ peak ] <= peakless_calib_top[ old ]:
old = peak
peak -= 1
peakless_calib_top[ peak : first ] = peakless_calib_top[ peak ] * np.ones( first - peak )
peak , old = first + 2 , first + 1
while peakless_calib_top[ peak ] <= peakless_calib_top[ old ]:
old = peak
peak += 1
peakless_calib_top[ first : peak ] = peakless_calib_top[ peak ] * np.ones( peak - first )
peakless_calib_top = sig.medfilt( peakless_calib_top , 111 )
"""
It's possible to have an idea of the part the spectrum begins with the
small large peak at the start of it, the peak at 3810 A should be inside
it. The same goes for the area at the end.
ONLY TRUE FOR THE CURRENT CALIBRATION (Hg)
"""
argmin = np.argmin(
peakless_calib_top[ : len( peakless_calib_top ) // 2 ]
)
argmax = np.argmax( peakless_calib_top[ : argmin ] )
peaks_inside = np.where(
np.logical_and(
argmax < peaks_calib_top,
argmin > peaks_calib_top,
)
)[0]
if len( peaks_inside ) < 1:
raise Error( 'unknown plage, cannot autocalibrate' )
first_peak_cal = peaks_inside[0]
first_peak_ref = 3 # hard-coded
"""
The next peak after the minimum at the end of the spectrum should be
5079 A.
ONLY TRUE FOR THE CURRENT CALIBRATION (Hg)
"""
argmin_1 = np.argmin(
peakless_calib_top[ len( peakless_calib_top ) // 2 : ]
) + len( peakless_calib_top ) // 2
peaks_inside = np.where(
argmin_1 < peaks_calib_top
)[0]
if len( peaks_inside ) < 1:
raise Error( 'unknown plage, cannot autocalibrate' )
last_peak_cal = peaks_inside[0]
last_peak_ref = 20 # hard-coded
print( first_peak_cal , last_peak_cal )
polyval = np.polyfit(
peaks_calib_top[ first_peak_cal : last_peak_cal ],
peaks_reference[ first_peak_ref : last_peak_ref ],
1 ,
) # We suppose there is as much calib peak than ref peak for now
peaks_values = [ reference[ 1 , i ] for i in peaks_reference ]
sorting = np.argsort( peaks_values )[ :: -1 ]
wavelength = np.array( [
reference[ 0 , i ] for i in np.array( [
peaks_reference[ j ] for j in sorting
] ).astype( int )
] )
polyval_wavelength = np.polyfit(
peaks_reference,
np.sort( wavelength ),
1,
)
wavelength = np.polyval(
polyval_wavelength,
np.polyval(
polyval,
np.arange(
0 ,
len( mean_calib_top ),
1 ,
)
)
)
manager = qt.FigureManager(
qt.FigureCanvas(
fig.Figure(
@ -35,73 +124,22 @@ manager = qt.FigureManager(
),
0,
)
manager.canvas.figure.add_subplot( 2 , 1 , 1 , xlim = ( 3800 , 4000 ) , xmargin = 0 ).plot(
manager.canvas.figure.gca().plot(
wavelength ,
mean_calib_top,
)
manager.canvas.figure.axes[0].set_title( 'raw data' )
manager.canvas.figure.add_subplot( 2 , 1 , 2 , xlim = ( 3800 , 4000 ) , xmargin = 0 ).plot(
reference[0],
reference[1],
)
manager.canvas.figure.axes[1].set_title( 'reference' )
manager.show()
manager.start_main_loop()
"""
for peak in np.array( peaks_calib_top ).astype( int ):
first = peak
peak , old = first - 2 , first - 1
while mean_calib_top[ peak ] <= mean_calib_top[ old ]:
old = peak
peak -= 1
mean_calib_top[ peak : first ] = mean_calib_top[ peak ] * np.ones( first - peak )
peak , old = first + 2 , first + 1
while mean_calib_top[ peak ] <= mean_calib_top[ old ]:
old = peak
peak += 1
mean_calib_top[ first : peak ] = mean_calib_top[ peak ] * np.ones( peak - first )
manager = qt.FigureManager(
qt.FigureCanvas(
fig.Figure(
figsize = ( 10 , 5 )
),
),
0,
)
manager.canvas.figure.gca().plot(
mean_calib_top
)
manager.canvas.figure.gca().plot(
sig.medfilt( mean_calib_top , 71 )
)
manager.show()
manager.start_main_loop()
manager = qt.FigureManager(
qt.FigureCanvas(
fig.Figure(),
),
1,
)
signal_calib = sig.convolve(
sig.medfilt( mean_calib_top , 71 ),
np.ones( 50 ),
'same'
)
manager.canvas.figure.gca().plot(
signal
wavelength ,
peakless_calib_top,
)
manager.canvas.figure.gca().vlines(
[
np.argmin( signal[ 25 : -25 ] )
wavelength[ argmin ] ,
wavelength[ argmax ] ,
wavelength[ argmin_1 ],
] ,
np.min( signal[ 25 : -25 ] ),
np.max( signal[ 25 : -25 ] ),
np.min( peakless_calib_top ),
np.max( peakless_calib_top ),
color = 'red' ,
)
manager.show()