Compare commits

..

No commits in common. "5acd52c1ae49544ed7e8eb50806a3753dbd32f6a" and "292ea9906999f2c8c895207391ee815729057c67" have entirely different histories.

6 changed files with 148 additions and 558 deletions

View file

@ -1,10 +0,0 @@
from classes.science.border import Border
class CalibrationSpectrum:
"""
Define spectrum border
"""
def __init__( self , up = Border() , down = Border ):
self.up = up
self.down = down

View file

@ -1,14 +1,7 @@
from numpy import ndarray, ones, argmax, arange, arctan, tan, pi, mean, max, min
from numpy import ndarray, argmax, max, quantile, arange, where, convolve, ones
from scipy.optimize import curve_fit
from scipy.signal import convolve, find_peaks
from scipy.ndimage import rotate
from classes.science.border import Border
from classes.science.calibration_spectrum import CalibrationSpectrum
from function.utils import find_point, fill, find_peak_low_high
from function.fit import linear
from logging import getLogger
from gettext import gettext as _
from function.utils import find_point, fill
class Plate:
"""
@ -17,43 +10,62 @@ class Plate:
def __init__( self , data ):
if not isinstance( data , ndarray ):
raise TypeError( _( 'data must be a ndarray' ) )
if len( data.shape ) != 2:
raise ValueError( _( 'data must be a 2d matrix' ) )
raise TypeError( 'data must be a ndarray' )
self.data = data
self.set_border()\
.rotate()\
.set_spectrum()\
.set_calibration_spectrum()
self.set_border()
def compress( self ):
def set_border( self , factor = 10 ):
"""
Compress the plate data to fit the biggest dimension in a 2000
pixels axis and the smallest in a 200 pixels axis at minimum.
Return the compressed data and the compression factor used.
Set current border (without area outside the plate)
"""
min_factor = max( self.data.shape ) // 2000 # min factor to have a side
# with a maximum of 1000 pixels
max_factor = min( self.data.shape ) // 200 # max factor to have
# a side with a minimum of 100 pixel
if min_factor < max_factor:
factor = int( mean( ( max_factor , min_factor ) ) )
else: # the smallest side will be less than 100 pixels with the
# minimum compression factor
logger = getLogger( 'naroo reader' )
logger.warning(
_( (
'slow compression: ratio between height and width'
' is greater than 10 ({ratio:.2f})'
) ).format(
ratio = max( self.size() ) / min( self.size() )
)
compressed = self.compress( factor )
points = self.get_points( compressed )
self.border = Border()
self.border.x.min = 0
self.border.x.max = compressed.shape[1] - 1
self.border.y.min = 0
self.border.y.max = compressed.shape[0] - 1
extremum = []
x_half = compressed.shape[1] // 2
y_half = compressed.shape[0] // 2
for index in range( len( points ) ):
point = points[ index ]
point[0] -= int( compressed.shape[0] == point[0] ) # keep in
point[1] -= int( compressed.shape[1] == point[1] ) # range
taken_points = fill(
compressed,
point ,
1000 , # intensity threshold
)
factor = max_factor
return self.data[
: : factor,
: : factor,
] , factor
x = [ taken_point[1] for taken_point in taken_points ]
y = [ taken_point[0] for taken_point in taken_points ]
if max( x ) < x_half:
if self.border.x.min < max( x ):
self.border.x.min = max( x ) # biggest min
elif min( x ) > x_half: # elif to only accept one side
if self.border.x.max > min( x ):
self.border.x.max = min( x ) # smallest max
elif max( y ) < y_half:
if self.border.y.min < max( y ):
self.border.y.min = max( y ) # same
elif min( y ) > y_half:
if self.border.y.max > min( y ):
self.border.y.max = min( y ) # same
offset = 3
self.border.x.min += offset
self.border.y.min += offset
self.border.x.max -= offset
self.border.y.min -= offset
self.border.scale( factor )
def get_points( self , compressed ):
first_column = find_point(
@ -104,194 +116,36 @@ class Plate:
return first_column + last_column + first_line + last_line
def compress( self , factor ):
return self.data[
: : factor,
: : factor,
]
def rotate( self ):
"""
Auto-rotate to be vertically and horizontally aligned
"""
indexes_max = argmax(
convolve(
self.data[
1 * self.border.y.size() // 4:
3 * self.border.y.size() // 4,
1 * self.border.x.size() // 4:
3 * self.border.x.size() // 4
] ,
ones( ( 500 , 1 ) ),
'valid' ,
) ,
axis = 0,
maxes = max(
self.data[ self.border.slice() ],
axis = 0 ,
)
indexes = where(
maxes > quantile( maxes , 0.5 )
)
abciss = arange(
1 * self.border.x.size() // 4,
3 * self.border.x.size() // 4
)
fit_result = curve_fit(
linear ,
abciss ,
indexes_max,
)[0]
angle = arctan( fit_result[0] ) * pi / 180 # rad
diff = int( # adjust height border
tan( angle ) * ( self.border.x.size() )
)
self.data = rotate(
self.data,
angle ,
)
self.border.y.min -= diff
self.border.y.max -= diff
return self
def set_border( self ):
"""
Set current border (without area outside the plate)
"""
compressed , factor = self.compress()
points = self.get_points( compressed )
self.border = Border()
self.border.x.min = 0
self.border.x.max = compressed.shape[1] - 1
self.border.y.min = 0
self.border.y.max = compressed.shape[0] - 1
extremum = []
x_half = compressed.shape[1] // 2
y_half = compressed.shape[0] // 2
for index in range( len( points ) ):
point = points[ index ]
point[0] -= int( compressed.shape[0] == point[0] ) # keep in
point[1] -= int( compressed.shape[1] == point[1] ) # range
taken_points = fill(
compressed,
point ,
2000 , # intensity threshold
)
x = [ taken_point[1] for taken_point in taken_points ]
y = [ taken_point[0] for taken_point in taken_points ]
if len( x ) > 5 and len( y ) > 5:
if max( x ) < x_half:
if self.border.x.min < max( x ):
self.border.x.min = max( x ) # biggest min
elif min( x ) > x_half:
# elif to only accept one side
if self.border.x.max > min( x ):
self.border.x.max = min( x ) # smallest max
elif max( y ) < y_half:
if self.border.y.min < max( y ):
self.border.y.min = max( y ) # same
elif min( y ) > y_half:
if self.border.y.max > min( y ):
self.border.y.max = min( y ) # same
offset = 3
self.border.x.min += offset
self.border.y.min += offset
self.border.x.max -= offset
self.border.y.min -= offset
self.border.scale( factor )
return self
def set_calibration_spectrum( self ):
"""
Set calibration sprectrum area
"""
self.calibration_spectrum = CalibrationSpectrum()
def indicator( list_ , matrix ):
"""
Define an indicator which define if the horizontal slice has
a chance to be a part of a calibration
"""
avg = mean( matrix )
if mean( list_ ) > 0.75 * avg:
return 0
if mean( list_ ) < 0.25 * avg:
return 1
positions = where( list_ > mean( list_ ) )[0]
if len( positions ) < 100:
return 2
if len( positions ) > 400:
return 3
distance = mean( positions[ 1 : ] - positions[ : - 1 ] )
if distance < 10:
return 4
return 10
list_ = [
indicator(
self.data[
i ,
self.border.slice()[1],
] ,
self.data[ self.border.slice() ],
) for i in range(
self.border.y.min,
self.border.y.max,
)
]
self.border.x.min,
self.border.x.max
)[ indexes ]
indexes_max = argmax(
self.data[ self.border.slice() ],
axis = 0 ,
)[ indexes ]
indexes_max = convolve(
indexes_max ,
ones( 100 ) ,
'same' ,
) / 100
import matplotlib.pyplot as plt
plt.plot( list_ )
plt.plot( abciss , indexes_max )
plt.show()
return self
def set_spectrum( self ):
"""
Set spectrum area
"""
self.spectrum = Border()
list_ = convolve(
mean(
self.data[ self.border.slice() ],
axis = 1 ,
) ,
ones( 200 ),
'valid' ,
)
indexes = find_peak_low_high(
list_ ,
( max( list_ ) + mean( list_ ) ) / 2,
)[0]
self.spectrum.y.min = indexes[0] + self.border.y.min + 100
self.spectrum.y.max = indexes[1] + self.border.y.min + 100
import matplotlib.pyplot as plt
plt.imshow( self.data[ self.border.slice() ] , aspect = 'auto' )
plt.show()
list_ = convolve(
mean(
self.data[ self.border.slice() ],
axis = 0 ,
) ,
ones( 200 ),
'valid' ,
)
indexes = find_peak_low_high(
list_ ,
mean( list_ ) + max( list_ ) / 2,
)[0]
self.spectrum.x.min = indexes[0] + self.border.x.min + 100
self.spectrum.x.max = indexes[1] + self.border.x.min + 100
return self
def size( self ):
"""
get plate size
"""
return self.data.shape

View file

@ -1,14 +1,6 @@
from sys import stdout, argv, executable
from gettext import gettext as _
from logging import getLogger, StreamHandler, FileHandler, Formatter
from warnings import warn
from pathlib import Path
_formatter = Formatter(
fmt = '${levelname}:${name}:${message}',
style = '$' ,
)
_program_cmd = executable + ' ' + argv[0]
class Settings:
"""
Settings manager
@ -25,16 +17,12 @@ class Settings:
self.set_no_cache()
self.set_output()
self.set_verbose()
self.set_log_file()
self.set_wave_cal()
# configuration change
if len( arguments ) < 1:
raise Exception(
_( (
'no argument given, type \'{program} -g\' for more'
' information'
) ).format( program = _program_cmd )
'type \'' + __file__ + ' -h\' for more information'
)
index = 0
@ -43,25 +31,22 @@ class Settings:
if argument[0] == '-':
if len( argument ) < 2:
raise Exception(
_( (
'unknown argument {argument}, type '
'\'{program} -h\' for more information'
) ).format(
program = _program_cmd,
argument = argument ,
)
'unknown argument, type \' + __file__ + \' -h' +
' for more information'
)
if argument[1] != '-':
if argument == '-h':
argument = '--help'
elif argument == '-V':
argument = '--version'
elif argument == '-v':
argument = '--verbose'
elif argument == '-n':
argument = '--no-cache'
elif argument == '-c':
if index == len( arguments ) - 1:
raise Exception(
_( 'cache have to take a value' )
'cache have to take a value'
)
arguments[ index + 1 ] = '--cache=' + \
arguments[ index + 1 ]
@ -70,7 +55,7 @@ class Settings:
elif argument == '-o':
if index == len( arguments ) - 1:
raise Exception(
_( 'output have to take a value' )
'output have to take a value'
)
arguments[ index + 1 ] = '--output=' + \
arguments[ index + 1 ]
@ -79,10 +64,7 @@ class Settings:
elif argument == '-w':
if index == len( arguments ) - 1:
raise Exception(
_( (
'wavelength calibration have to take'
' a value'
) )
'wavelength calibration have to take a value'
)
arguments[ index + 1 ] = '--wavelength=' + \
arguments[ index + 1 ]
@ -91,44 +73,17 @@ class Settings:
elif argument == '-i':
if index == len( arguments ) - 1:
raise Exception(
_( (
'intensity calibration have to take'
' a value'
) )
'intensity calibration have to take a value'
)
arguments[ index + 1 ] = '--intensity=' + \
arguments[ index + 1 ]
index += 1
continue
elif argument == '-l':
if index == len( arguments ) - 1:
raise Exception(
_( (
'log file have to take a value'
) )
)
arguments[ index + 1 ] = '--log-file=' + \
arguments[ index + 1 ]
index += 1
continue
elif argument == '-v':
if index == len( arguments ) - 1:
raise Exception(
_( 'verbosity level have to take a value' )
)
arguments[ index + 1 ] = '--verbose=' + \
arguments[ index + 1 ]
index += 1
continue
else:
raise Exception(
_( (
'unknown argument {argument}, type'
'\'{program} -h\' for more information'
) ).format(
program = _program_cmd,
argument = argument ,
)
'unknown argument "' + argument + \
'", type \'' + __file__ + \
' -h\' for more information'
)
if argument[1] == '-': # not elif because argument
# can change in the last if
@ -138,13 +93,10 @@ class Settings:
elif argument == '--version':
print( self.version() )
exit()
elif argument == '--verbose':
self.set_verbose( True )
elif argument == '--no-cache':
self.set_no_cache( True )
elif (
len( argument ) > 10 and
argument[ : 10 ] == '--verbose='
):
self.set_verbose( argument[ 10 : ] )
elif (
len( argument ) > 8 and
argument[ : 8 ] == '--cache='
@ -165,34 +117,18 @@ class Settings:
argument[ : 12 ] == '--intensity='
):
self.set_inte_cal( argument[ 12 : ] )
elif (
len( argument ) > 11 and
argument[ : 11 ] == '--log-file='
):
self.set_log_file( argument[ 11 : ] )
else:
raise Exception(
_( (
'unknown argument {argument}, type'
'\'{program} -h\' for more information'
) )
'unknown argument "' + argument + \
'", type \'' + __file__ + ' -h\' ' + \
'for more information'
)
else:
self.set_input( argument )
index += 1
logger = getLogger( 'naroo reader' )
if not logger.hasHandlers():
handler = StreamHandler( stdout )
handler.setFormatter(
_formatter,
)
logger.addHandler(
handler,
)
if self.input == None:
raise Exception( _( 'input should be given' ) )
raise Exception( 'input should be given' )
def set_cache( self , cache = None ):
"""
@ -206,7 +142,7 @@ class Settings:
self.cache = cache
else:
raise TypeError(
_( 'cache should be a path' )
'cache should be a path'
)
def set_input( self , input = None ):
"""
@ -220,13 +156,11 @@ class Settings:
self.input = input
else:
raise TypeError(
_( 'input should be a path' )
'input should be a path'
)
if self.input != None and not self.input.is_file():
raise IOError(
_( 'could not open {input}' ).format(
input = self.input,
)
'could not open ' + str( self.input )
)
def set_inte_cal( self , intensity_calibration = None ):
@ -241,41 +175,11 @@ class Settings:
self.inte_cal = intensity_calibration
else:
raise TypeError(
_( 'intensity calibration should be a path' )
'intensity calibration should be a path'
)
if self.inte_cal != None and not self.inte_cal.is_file():
raise IOError(
_( 'could not open {intensity_file}' ).format(
intensity_file = self.inte_cal,
)
)
def set_log_file( self , log_file = None ):
"""
Setter for log file (None or path)
"""
if isinstance( log_file , str ):
self.log_file = Path( log_file )
elif isinstance( log_file , Path ):
self.log_file = log_file
elif log_file == None:
self.log_file = log_file
else:
raise TypeError(
_( 'log file should be a path' )
)
if self.log_file != None:
logger = getLogger( 'naroo reader' )
handler = FileHandler(
filename = str( log_file ),
mode = 'a' ,
)
handler.setFormatter(
_formatter,
)
logger.addHandler(
handler,
'could not open ' + str( self.inte_cal )
)
def set_no_cache( self , no_cache = False ):
@ -286,7 +190,7 @@ class Settings:
self.no_cache = no_cache
else:
raise TypeError(
_( 'no_cache option should be a boolean' )
'no_cache option should be a boolean'
)
def set_output( self , output = 'data.fits' ):
@ -299,42 +203,25 @@ class Settings:
self.output = output
else:
raise TypeError(
_( 'output should be a path' )
'output should be a path'
)
if self.output.is_file():
logger = getLogger( 'naroo reader' )
logger.warning(
_(
'{output} already exists, it will be overwritten'
).format( output = self.output )
warn(
str( self.output ) + ' already exists, it will be ' +
'overwritten',
UserWarning ,
)
def set_verbose( self , verbose = 'WARNING' ):
def set_verbose( self , verbose = False ):
"""
Setter for verbose level (string)
Setter for verbosity flag (bool)
"""
if isinstance( verbose , str ):
self.verbose = verbose.upper()
if verbose not in [
'CRITICAL',
'ERROR' ,
'WARNING' ,
'INFO' ,
'DEBUG' ,
'NOTSET' ,
]:
raise ValueError(
_( (
'verbose level must be one of the listed ones'
'in python documentation'
) )
)
if isinstance( verbose , bool ):
self.verbose = verbose
else:
raise TypeError(
_( 'verbose level should be a string' )
'verbose should be a boolean'
)
logger = getLogger( 'naroo reader' )
logger.setLevel( self.verbose )
def set_wave_cal( self , wavelength_calibration = None ):
"""
@ -348,40 +235,40 @@ class Settings:
self.wave_cal = wavelength_calibration
else:
raise TypeError(
_( 'wavelength calibration should be a path' )
'wavelength calibration should be a path'
)
if self.wave_cal != None and not self.wave_cal.is_file():
raise IOError(
_( 'could not open {wavelength_file}' ).format(
wavelength_file = self.wave_cal
)
'could not open ' + str( self.wave_cal )
)
def help( self ):
return 'naroo_reader [options...] input\
return '\
naroo_reader [options...] input\
\n -w wavelength wavelength calibration file, default to None.\
\n None means no wavelength interpolation\
\n -i intensity intensity calibration file, default to None.\
\n None means no intensity interpolation\
\n -c --cache use given cache file to store new temporary\
\n data or use old ones.\
\n -h --help show this help and quit.\
\n -i --intensity intensity calibration file, default to None.\
\n None means no intensity interpolation\
\n -l --log-file file where to log event.\
\n -h --help show this help and quit\
\n -n --no-cache do not use already existing cache file.\
\n If cache is defined, the cache file will be\
\n overwrited.\
\n If cache is None, it does nothing.\
\n -o --output Output file. Default to data.fits.\
\n -V --version show version number and quit.\
\n -v --verbose set logging level help debugging.\
\n -w wavelength wavelength calibration file, default to None.\
\n None means no wavelength interpolation.'
\n If cache is None, it does nothing\
\n -o --output Output file. Default to data.fits\
\n -V --version show version number and quit\
\n -v --verbose show more information to help debugging\
'
def __str__( self ):
return 'current settings:\
return '\
current settings:\
\n cache: ' + str( self.cache ) + '\
\n input: ' + str( self.input ) + '\
\n intensity calibration: ' + str( self.inte_cal ) + '\
\n no cache flag: ' + str( self.no_cache ) + '\
\n output: ' + str( self.output ) + '\
\n logging level: ' + str( self.verbose ) + '\
\n log-file: ' + str( self.log_file ) + '\
\n wavelength calibration: ' + str( self.wave_cal )
\n verbose flag: ' + str( self.verbose ) + '\
\n wavelength calibration: ' + str( self.wave_cal ) + '\
'

View file

@ -1,2 +0,0 @@
def linear( x , a , b ):
return a * x + b

View file

@ -1,3 +1,4 @@
import cv2
import numpy as np
def check_side( data , point , tolerance ):
@ -64,7 +65,7 @@ def point( index_1 , index_2 , axis = 'x' ):
return [ index_2 , index_1 ]
return [ index_1 , index_2 ]
def find_point( list_ , index , axis = 'x' , threshold = 0.95 ):
def find_point( list_ , index , axis = 'x' , threshold = 0.5 ):
"""
find the index where to fill in a side
"""
@ -79,21 +80,22 @@ def find_point( list_ , index , axis = 'x' , threshold = 0.95 ):
if not isinstance( threshold , float ):
raise ValueError( 'threshold must be a float, ' + type( threshold ) + ' given' )
mean = np.mean( list_ )
ampl = np.max( list_ ) - np.min( list_ )
if ampl < np.mean( list_ ) / 2:
if ampl < mean / 2:
return [ point( index , 0 , axis ) ]
else:
points = []
list_ = list_.copy()
list_ = np.convolve( list_ , np.ones( 100 ) , 'same' )
list_ -= np.min( list_ )
list_ /= np.max( list_ )
i , inside , size = 0 , False , 0
while i < len( list_ ):
if list_[ i ] > threshold and not inside:
points.append( point( index , i, axis ) )
points.append( point( index , i , axis ) )
inside = True
size = 0
elif list_[ i ] < threshold and inside:
@ -152,6 +154,14 @@ def last_same_value( list_ ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
value = list_[0]
return np.argwhere( list_ == value ).max()
def rotate( image , angle ):
"""
rotate the following image by the given angle
"""
height , width = image.shape[ : 2 ]
cX , cY = ( width // 2 , height // 2 )
matrix = cv2.getRotationMatrix2D( ( cX , cY ) , angle , 1 )
return cv2.warpAffine( image , matrix , ( width , height ) , flags = cv2.INTER_NEAREST )
def retrieve_peaks( data , window_size = 5 , error_coef = 1.05 , max_window_size = 30 , min_successive = 2 ):
"""
get peak position from a 1D data
@ -207,154 +217,3 @@ def near_value( list_ , value ):
) # interpolation
index = np.append( index , np.where( list_ == value ) )
return np.round( np.sort( index ) ).astype( int ) # triage
def find_peak_low_high( list_ , value ):
"""
Return index of start and end of rise and descent of peaks crossing
a given value in a list
"""
indexes = near_value(
list_,
value,
)
old_list_ = list_
list_ = np.gradient( list_ )
if list_[ indexes[0] ] < 0:
indexes.insert( 0 , 0 )
if list_[ indexes[0] ] < 0:
indexes.insert( 0 , 0 ) # start with a descent
if list_[ indexes[-1] ] > 0:
indexes.append( len( list_ ) - 1 )
if list_[ indexes[-1] ] > 0:
indexes.append( len( list_ ) - 1 ) # end with a rise
if len( indexes ) % 2 == 1:
raise Exception(
'number of peaks doesn\'t match what it should be'
)
rises = [
indexes[ i ] for i in range( 0 , len( indexes ) , 2 )
]
descents = [
indexes[ i ] for i in range( 1 , len( indexes ) , 2 )
]
i = 0
start_rise = np.where( list_[ : rises[i] ] < 0 )
end_rise = rises[i] + np.where(
list_[ rises[i] : descents[i] ] < 0
)
start_descent = rises[i] + np.where(
list_[ rises[i] : descents[i] ] > 0
)
if len( rises ) == 1:
end_descent = descents[i] + np.where(
list_[ descents[i] : ] > 0
)
else:
end_descent = descents[i] + np.where(
list_[ descents[i] : rises[i + 1] ] > 0
)
if len( start_rise[0] ) == 0:
rise_starts = [ 0 ]
else:
rise_starts = [ start_rise[0][-1] ]
if len( end_rise[0] ) == 0:
rise_ends = [ rise_starts[0] ] # if first is a descent
else:
rise_ends = [ end_rise[0][0] ]
if len( start_descent[0] ) == 0:
descent_starts = [ rise_ends[0] ] # same
else:
descent_starts = [ start_descent[0][-1] ]
if len( end_descent[0] ) == 0: # edge case:
descent_ends = [ descent_starts[0] ] # one pixel decrease
else:
descent_ends = [ end_descent[0][0] ]
while i < len( rises ) - 2: # last is i == len( rises ) - 2, works
# if len( rises ) = 1 or 2
i += 1
start_rise = descents[i - 1 ] + np.where(
list_[ descents[i - 1] : rises[i] ] < 0
)
end_rise = rises[i] + np.where(
list_[ rises[i] : descents[i] ] < 0
)
start_descent = rises[i] + np.where(
list_[ rises[i] : descents[i] ] > 0
)
end_descent = descents[i] + np.where(
list_[ descents[i] : rises[i + 1] ] > 0
)
if len( start_rise[0] ) == 0:
rise_starts.append( descent_ends[-1] )
else:
rise_starts.append(
start_rise[0][-1] # last pixel that decrease
)
if len( end_rise[0] ) == 0:
rise_ends.append( rise_starts[-1] )
else:
rise_ends.append(
end_rise[0][0] # first pixel that decrease
)
if len( start_descent[0] ) == 0:
descent_starts.append( rises_ends[-1] )
else:
descent_starts.append(
start_descent[0][-1] # last pixel that increase
)
if len( end_descent[0] ) == 0:
descent_ends.append( descent_starts[-1] )
else:
descent_ends.append(
end_descent[0][0] # first pixel that increase
)
if i != 0 or len( rises ) != 1:
i += 1
start_rise = descents[i - 1] + np.where(
list_[ descents[i - 1] : rises[i] ] < 0
)
end_rise = rises[i] + np.where(
list_[ rises[i] : descents[i] ] < 0
)
start_descent = rises[i] + np.where(
list_[ rises[i] : descents[i] ] > 0
)
end_descent = descents[i] + np.where(
list_[ descents[i] : ] > 0
)
if len( start_rise[0] ) == 0:
rise_starts.append( descent_ends[-1] )
else:
rise_starts.append(
start_rise[0][-1] # last pixel that decrease
)
if len( end_rise[0] ) == 0:
rise_ends.append( rise_starts[-1] )
else:
rise_ends.append(
end_rise[0][0] # first pixel that decrease
)
if len( start_descent[0] ) == 0:
descent_starts.append( rises_ends[-1] )
else:
descent_starts.append(
start_descent[0][-1] # last pixel that increase
)
if len( end_descent[0] ) == 0:
descent_ends.append( descent_starts[-1] )
else:
descent_ends.append(
end_descent[0][0] # first pixel that increase
)
return [
rise_starts ,
rise_ends ,
descent_starts,
descent_ends ,
]

View file

@ -9,4 +9,6 @@ settings = Settings( arguments[ 1 : ] ) # remove the "main.py" part
hdul = open( settings.input )
plate = Plate( hdul[0].data )
plate.rotate()
hdul.close()