from astropy.io.fits import open from numpy import compress as numpy_compress from numpy import ndarray def load( filename ): """ retrieve data from naroo fits """ if not isinstance( filename , str ): raise ValueError( 'the filename must be a string, ' + type( filename ) + ' given' ) hdul = open( filename ) data = hdul[0].data hdul.close() return data def compress( data , factor ): """ divide the size of the data by 2**factor """ if not isinstance( data , ndarray ) and not isinstance( data , list ): raise ValueError( 'data must be a list, ' + type( data ) + ' given' ) if not isinstance( factor , int ): raise ValueError( 'factor must be an integer, ' + type( factor ) + ' given' ) for _ in range( factor ): data = numpy_compress( [ True , False ] * ( data.shape[1] // 2 ) , data , axis = 1 ) data = numpy_compress( [ True , False ] * ( data.shape[0] // 2 ) , data , axis = 0 ) return data def big_to_small( indexes , factor ): """ convert a coordinate of a point in the non compressed data to the same coordinate in the compressed one (there is a loss of information here !) """ if not isinstance( indexes , int ) and not isinstance( indexes , list ) and not isinstance( indexes , tuple ): raise ValueError( 'indexes must be an integer or a tuple, ' + type( indexes ) + ' given' ) if not isinstance( factor , int ): raise ValueError( 'factor mus be an integer' ) if isinstance( indexes , int ): return big_to_small( [ indexes ] , factor )[0] if isinstance( indexes , tuple ): return tuple( big_to_small( list( indexes ) , factor ) ) for i in range( len( indexes ) ): indexes[i] = indexes[i] // ( 2 ** factor ) return indexes def small_to_big( indexes , factor ): """ convert a coordinate of a point n the compressed data to the same coordinate in the compressed one """ if not isinstance( indexes , int ) and not isinstance( indexes , list ) and not isinstance( indexes , tuple ): raise ValueError( 'indexes must be an integer or a tuple, ' + type( indexes ) + ' given' ) if not isinstance( factor , int ): raise ValueError( 'factor mus be an integer' ) if isinstance( indexes , int ): return small_to_big( [ indexes ] , factor )[0] if isinstance( indexes , tuple ): return tuple( small_to_big( list( indexes ) , factor ) ) for i in range( len( indexes ) ): indexes[i] = int( indexes[i] * 2 ** factor ) return indexes def check_side( data , point , tolerance ): """ give coordinates of all side point of the given point which have an intensity difference inferior than tolerance """ if not isinstance( data , ndarray ) and not isinstance( data , list ): raise ValueError( 'data must be a list, ' + type( data ) + ' given' ) if not isinstance( point , ndarray ) and not isinstance( point , tuple ) and not isinstance( point , list ): raise ValueError( 'point must be a tuple, ' + type( point ) + ' given' ) if not isinstance( tolerance , int ) and not isinstance( tolerance , float ): raise ValueError( 'tolerance must be a number, ' + type( tolerance ) + ' given' ) positions , intensity = [] , data[ point ] if 0 <= position[0] < data.shape[0] - 1 and intensity - tolerance <= data[ position[0] + 1 , position[1] ] <= intensity + tolerance: positions.append( ( position[0] + 1 , position[1] ) ) if 0 < position[0] < data.shape[0] and intensity - tolerance <= data[ position[0] - 1 , position[1] ] <= intensity + tolerance: positions.append( ( position[0] - 1 , position[1] ) ) if 0 <= position[1] < data.shape[1] - 1 and intensity - tolerance <= data[ position[0] , position[1] + 1 ] <= intensity + tolerance: positions.append( ( position[0] , position[1] + 1 ) ) if 0 < position[1] < data.shape[1] and intensity - tolerance <= data[ position[0] , position[1] - 1 ] <= intensity + tolerance: positions.append( ( position[0] , position[1] - 1 ) ) return positions def fill( data , point , tolerance , limit = 100000 ): """ give the coordinate of all points that fill the area with the given tolerance """ if not isinstance( data , ndarray ) and not isinstance( data , list ): raise ValueError( 'data must be a list, ' + type( data ) + ' given' ) if not isinstance( point , ndarray ) and not isinstance( point , tuple ) and not isinstance( point , list ): raise ValueError( 'point must be a tuple, ' + type( point ) + ' given' ) if not isinstance( tolerance , int ) and not isinstance( tolerance , float ): raise ValueError( 'tolerance must be a number, ' + type( tolerance ) + ' given' ) if not isinstance( limit , int ): raise ValueError( 'limit must be an integer, ' + type( limit ) + ' given' ) taken_point = [] new_points = [ point ] i = 0 while len( new_points ) != 0 and i < limit: point = new_points.pop(0) taken_point.append( point ) for position in check_side( data , point , tolerance ): if not position in new_points and not position in taken_point: new_points.append( position ) i += 1 return np.array( taken_point )