naroo_reader/ETA.py

681 lines
22 KiB
Python
Executable file

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import utils
import sys
import pathlib
import shelve
from scipy.signal import convolve as sp_convolve
from scipy.signal import find_peaks
from scipy.ndimage import rotate
cache , filename , output , calibration , verbose , no_cache = '' , None , None , None , False , False
if len( sys.argv ) < 2:
raise Exception( 'ETA.py: type \'ETA.py -h\' for more information' )
argv , i = sys.argv[ 1 : ] , 0
while i < len( argv ):
arg = argv[ i ]
if arg[0] == '-':
if len( arg ) < 2:
raise Exception( 'ETA.py: unknown argument, type \'ETA.py -h\' for more information' )
if arg[1] != '-':
if arg == '-h':
arg = '--help'
elif arg == '-V':
arg = '--version'
elif arg == '-v':
arg = '--verbose'
elif arg == '-n':
arg == '--no-cache'
elif arg == '-c':
if i == len( sys.argv ) - 1:
raise Exception( 'ETA.py: cache have to take a value' )
argv[ i + 1 ] = '--cache=' + argv[ i + 1 ]
i += 1
continue
elif arg == '-o':
if i == len( sys.argv ) - 1:
raise Exception( 'ETA.py: output have to take a value' )
argv[ i + 1 ] = '--output=' + argv[ i + 1 ]
i += 1
continue
elif arg == '-a':
if i == len( sys.argv ) - 1:
raise Exception( 'ETA.py: calibration have to take a value' )
argv[ i + 1 ] = '--calibration=' + argv[ i + 1 ]
i += 1
continue
else:
raise Exception( 'ETA.py: unknown argument "' + arg + '", type \'ETA.py -h\' for more information' )
if arg[1] == '-': # not elif because arg can change after last if
if arg == '--help':
print( 'ETA.py [options...] filename\
\n -a --calibration calibration file, default to no calibration.\
\n No calibration means no wavelength interpolation\
\n -c --cache use given cache\
\n -h --help show this help and quit\
\n -n --no-cache do not use cache and rewrite it\
\n -o --output output file, default to standard output\
\n -V --version show version number and quit\
\n -v --verbose show more information to help debugging\
\n\
\nParse a naroo ETA fits' )
exit()
elif arg == '--version':
print( '0.3' )
exit()
elif arg == '--verbose':
verbose = True
elif arg == '--no-cache':
no_cache = True
elif len( arg ) > 8 and arg[ : 8 ] == '--cache=':
cache = arg[ 8 : ]
elif len( arg ) > 9 and arg[ : 9 ] == '--output=':
output = arg[ 9 : ]
elif len( arg ) > 14 and arg[ : 14 ] == '--calibration=':
calibration = arg[ 14 : ]
else:
raise Exception( 'ETA.py: unknown argument "' + arg + '", type \'ETA.py -h\' for more information' )
else:
raise Exception( 'ETA.py: this exception should never be raised' )
else:
filename = arg
i += 1
if filename == None:
raise Exception( 'ETA.py: filename should be given' )
if verbose:
cache, filename, output, calibration, verbose
print( f'ETA.py: launching now with parameters:\
\n --filename: {filename}\
\n --cache: {cache} ( default: \'\' )\
\n --calibration: {calibration} ( default to None )\
\n --output: {output} ( default to None )\
\n --verbose: True ( default to False)\
\n\
\n===========================================' )
# TODO: check in advance file to check if exists or writeable
data = utils.load( filename )
if verbose:
print( 'data loaded' )
cache_file = pathlib.Path( cache )
if cache_file.is_file() and not no_cache:
if verbose:
print( 'using cache' )
with shelve.open( str( cache_file ) ) as cache:
for key in [ 'data' , 'border' , 'calibrations' ]:
if key not in cache:
raise Exception( 'ETA.py: missing data in cache_file' )
data = cache[ 'data' ]
border = cache[ 'border' ]
calibrations = cache[ 'calibrations' ]
else:
if verbose:
print( 'not using cache' )
print( 'starting first zoom' )
"""
find fill points
"""
points = []
points += utils.find_point( data[ : , 0 ] , 0 ) # x_min
points += utils.find_point(
data[ : , data.shape[1] - 1 ],
data.shape[1] - 1 ,
) # x_max
index_min = 0
while data.shape[0] - 1 > index_min:
index_min += 1
if len( utils.find_point( data[ index_min , : ] , index_min , 'y' ) ) == 3:
break
points.append(
utils.find_point( data[ index_min , : ] , index_min , 'y' )[1]
) # y_min
index_max = data.shape[0] - 1
while index_min < index_max:
index_max -= 1
if len( utils.find_point( data[ index_max , : ] , index_max , 'y' ) ) == 3:
break
points.append(
utils.find_point( data[ index_max , : ] , index_max , 'y' )[1]
) # y_max
small_data = utils.compress( data , 5 )
points = utils.big_to_small( points , 5 )
# size - 1
points[ 1 ][ 1 ] -= 1
points[ 3 ][ 0 ] -= 1
# little shift to be inside the light
points[ 2 ][ 1 ] += 3
points[ 3 ][ 1 ] += 3
"""
fill data
"""
extremum = []
for point in points:
if point[0] < points[2][0]:
point[0] = points[2][0]
if point[1] < points[0][1]:
point[1] = points[0][1]
taken_points = utils.small_to_big(
np.array( [
points[2][0],
points[0][1],
] ) + utils.fill(
small_data[
points[2][0] : points[3][0] + 1,
points[0][1] : points[1][1] + 1
],
[
point[0] - points[2][0],
point[1] - points[0][1],
],
1000
),
5
)
extremum.append( [
np.min( taken_points[ : , 1 ] ),
np.max( taken_points[ : , 1 ] ),
np.min( taken_points[ : , 0 ] ),
np.max( taken_points[ : , 0 ] ),
] )
border = {
'x': {
'min': points[0][1] + extremum[0][1] + 1,
'max': points[0][1] + extremum[1][0] ,
},
'y': {
'min': points[2][0] + extremum[2][3] + 1,
'max': points[2][0] + extremum[3][2] ,
},
}
if verbose:
print( 'first zoom finished' )
print( 'starting label deletion' )
"""
label deletion
"""
mean_data = np.convolve(
np.gradient(
np.mean(
data[
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
],
axis = 0
)
),
np.ones(
int( 0.01 * (
border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
) )
),
'same'
)
mean_data -= np.min( mean_data )
mean_data /= np.max( mean_data )
top = utils.consecutive( np.where( mean_data > 0.75 )[0] )
down = utils.consecutive( np.where( mean_data < 0.25 )[0] )
size_top = [ len( list_ ) for list_ in top ]
size_down = [ len( list_ ) for list_ in down ]
label_x = {
'min': border[ 'x' ][ 'min' ] + top[ np.argmax( size_top ) ][0] ,
'max': border[ 'x' ][ 'min' ] + down[ np.argmax( size_down ) ][-1]
}
if label_x[ 'min' ] < data.shape[1] // 2:
if label_x[ 'max' ] < data.shape[1] // 2:
border[ 'x' ][ 'min' ] = label_x[ 'max' ]
else:
raise Exception( 'the label seems to be in the middle of the picture' )
elif label_x[ 'max' ] > data.shape[1] // 2:
border[ 'x' ][ 'max' ] = label_x[ 'min' ]
else:
raise Exception( 'for an unkown reason, label_x[ \'min\' ] > label_x[ \'max\' ]' )
if verbose:
print( 'label section deleted' )
print( 'starting rotation' )
"""
Rotation
"""
index = border[ 'x' ][ 'min' ]
gradient = np.gradient(
data[
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
) // 2,
index
]
)
while np.max( gradient ) - np.min( gradient ) > 5500:
index += 1
gradient = np.gradient(
data[
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
) // 2,
index
]
)
positions = np.argmax(
sp_convolve(
np.gradient(
data[
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
) // 2 ,
border[ 'x' ][ 'min' ] : index
] ,
axis = 0
) ,
np.ones( ( 100 , 1 ) ),
'valid'
) ,
axis = 0
)
list_ = np.arange( 0 , index - border[ 'x' ][ 'min' ] , 1 )
polyval = np.polyfit( list_ , positions , 1 )
angle = np.arctan( polyval[0] )
data = rotate( data , angle * ( 180 / np.pi ) ) # utils.rotate does not keep intensity absolute value ? TODO
diff_y = int( np.tan( angle ) * ( border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ] ) )
border[ 'y' ][ 'min' ] -= diff_y
border[ 'y' ][ 'max' ] -= diff_y
if verbose:
print( 'rotation finished' )
print( 'starting isolating calibration' )
"""
Calibration
"""
tot_avg = np.mean(
data[
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
]
)
def indicator( list_ ):
if np.mean( list_ ) > 0.75 * tot_avg:
return 0
if np.mean( list_ ) < 0.25 * tot_avg:
return 1
list_ -= np.min( list_ )
list_ /= np.max( list_ )
positions = np.where( list_ > 0.5 )[0]
if len( positions ) < 100:
return 2
if len( positions ) > 400:
return 3
distance = np.mean( positions[ 1 : ] - positions[ : -1 ] )
if distance < 10:
return 4
return 10
indicators = np.array( [ indicator( data[ i , border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ] ].copy() ) for i in range( border[ 'y' ][ 'min' ] , border[ 'y' ][ 'max' ] , 1 ) ] )
calibration_areas = utils.consecutive( np.where( indicators == 10 )[0] )
calibration_areas = [
[ calibration_area for calibration_area in calibration_areas if calibration_area[-1] < ( border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ] ) / 2 ],
[ calibration_area for calibration_area in calibration_areas if calibration_area[ 0] > ( border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ] ) / 2 ],
]
calibration_sizes = [
[ len( calibration_area ) for calibration_area in calibration_areas[0] ],
[ len( calibration_area ) for calibration_area in calibration_areas[1] ],
]
y_calibrations = [
calibration_areas[0][ np.argmax( calibration_sizes[0] ) ],
calibration_areas[1][ np.argmax( calibration_sizes[1] ) ],
]
calibrations = {
'top': {
'x': {
'min': border['x']['min'],
'max': border['x']['max'],
},
'y': {
'min': border['y']['min'] + y_calibrations[0][ 0],
'max': border['y']['min'] + y_calibrations[0][-1],
},
},
'down': {
'x': {
'min': border['x']['min'],
'max': border['x']['max'],
},
'y': {
'min': border['y']['min'] + y_calibrations[1][ 0],
'max': border['y']['min'] + y_calibrations[1][-1],
},
},
}
if verbose:
print( 'calibration lines isolated' )
print( 'starting curving main ETA' )
"""
stripes curves detection
"""
list_ = data[
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
].copy()
list_min = np.min( list_ , axis = 0 )
list_ -= list_min
list_max = np.max( list_ , axis = 0 )
list_ /= list_max
size = list_.shape[1]
y_stripe = np.argmax( list_ , axis = 0 )
good_x = np.where( y_stripe < 2 * np.mean( y_stripe ) )[0]
x_stripe = np.arange( 0 , size , 1 ).astype( int )[ good_x ]
y_stripe = y_stripe[ good_x ]
stripe = np.polyfit( x_stripe , y_stripe , 3 )
# First deformation
list_ = data[
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
]
y_diff = ( np.polyval(
stripe,
np.arange( 0 , border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ] , 1 )
) ).astype( int )
y_diff[ np.where( y_diff < 0 ) ] = 0
results = np.zeros( ( list_.shape[0] + np.max( y_diff ) , list_.shape[1] ) )
for i in range( list_.shape[1] ):
results[ : , i ] = np.concatenate( (
np.zeros(
np.max( y_diff ) - y_diff[ i ]
) ,
list_[ : , i ] ,
np.zeros( y_diff[i] ),
) )
data[
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
] = results[
: results.shape[0] - np.max( y_diff ),
:
]
if verbose:
print( 'main ETA curved' )
if not cache_file.exists() and not no_cache:
if verbose:
print( 'writing result in cache' )
with shelve.open( str( cache_file ) ) as cache:
cache[ 'data' ] = data
cache[ 'border' ] = border
cache[ 'calibrations'] = calibrations
if verbose:
print( 'cache saved' )
size_x = border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
size_y = calibrations[ 'down' ][ 'y' ][ 'min' ] - calibrations[ 'top' ][ 'y' ][ 'max' ]
# Calibration
if calibration != None:
if verbose:
print( 'starting calibration' )
import wavelength_calibration as wave_calib
peaks_calib = np.loadtxt( calibration ) # sorted list
peaks_calib = np.sort( peaks_calib )
mean_up = np.mean( data[
calibrations[ 'top' ][ 'y' ][ 'min' ] : calibrations[ 'top' ][ 'y' ][ 'max' ],
calibrations[ 'top' ][ 'x' ][ 'min' ] : calibrations[ 'top' ][ 'x' ][ 'max' ]
] , axis = 0 )
mean_down = np.mean( data[
calibrations[ 'down' ][ 'y' ][ 'min' ] : calibrations[ 'down' ][ 'y' ][ 'max' ],
calibrations[ 'down' ][ 'x' ][ 'min' ] : calibrations[ 'down' ][ 'x' ][ 'max' ]
] , axis = 0 )
peaks_up = np.array(
utils.retrieve_peaks(
mean_up ,
window_size = 1 ,
max_window_size = 1,
)
).astype( int )
peaks_down = np.array(
utils.retrieve_peaks(
mean_down ,
window_size = 1 ,
max_window_size = 1,
)
).astype( int )
peakless_up = wave_calib.remove_peaks( mean_up , peaks_up )
peakless_down = wave_calib.remove_peaks( mean_down , peaks_down )
calib = { # hard-coded for now
'first': 3 ,
'last' : 20,
}
first , last = wave_calib.get_extremities( peakless_up , peaks_up )
up = {
'first': first,
'last' : last ,
}
first , last = wave_calib.get_extremities( peakless_down , peaks_down )
down = {
'first': first,
'last' : last ,
}
peaks_up = peaks_up[ up[ 'first' ] : up[ 'last' ] + 1 ]
peaks_down = peaks_down[ down[ 'first' ] : down[ 'last' ] + 1 ]
peaks_calib = peaks_calib[ calib[ 'first' ] : calib[ 'last' ] + 1 ]
peaks_up = wave_calib.only_keep_calib( peaks_up , peaks_calib )
peaks_down = wave_calib.only_keep_calib( peaks_down , peaks_calib )
diff = peaks_up - peaks_down
polyval_vert = np.polyfit( # give diff by horizontal pixel
peaks_up,
diff ,
3 ,
)
if verbose:
print( 'x pixel to wavelenth calibration finished' )
print( 'starting y pixel to x pixel calibration' )
def diff_calc( x , list_y ):
"""
give "good" x list for a given x and y
x = 0 start from border[ 'x' ][ 'min' ]
y = 0 start from calibrations[ 'top' ][ 'y' ][ 'max' ]
"""
y_top = 0
y_bot = size_y
x_top = x
x_bot = x + np.polyval( polyval_vert , x )
a = ( x_top - x_bot ) / ( y_top - y_bot )
b = ( 1 / 2 ) * ( x_top + x_bot - a * ( y_top + y_bot ) )
return ( a * list_y + b ).astype( int )
padding = diff_calc( size_x , size_y ) - size_x
new_data = np.zeros( ( size_y , size_x - padding ) )
list_y = np.arange( 0 , size_y , 1 )
for x in range( size_x - padding ):
diff = diff_calc( x , list_y )
cons_diff , i = utils.same_value( diff ) , 0
for list_same in cons_diff:
new_data[ i : i + len( list_same ) , x ] = data[
calibrations[ 'top' ][ 'y' ][ 'max' ] + i : calibrations[ 'top' ][ 'y' ][ 'max' ] + i + len( list_same ),
calibrations[ 'top' ][ 'x' ][ 'min' ] + list_same[0]
]
i += len( list_same )
calibrations[ 'top' ][ 'x' ][ 'max' ] -= padding
calibrations[ 'down' ][ 'x' ][ 'max' ] -= padding
border[ 'x' ][ 'max' ] -= padding
if verbose:
print( 'y to x pixel calibrated' )
polyval_wavelength = np.polyfit( # x = 0 begins at the start of
peaks_up , # calibrations[ 'top' ][ 'x' ][ 'min' ]
peaks_calib,
1 ,
)
wavelength = np.polyval(
polyval_wavelength,
np.arange(
0 ,
len( mean_up ),
1 ,
)
)
if verbose:
print( 'end of calibration' )
else:
if verbose:
print( 'no calibration' )
padding = 0
wavelength = np.arange( size_y )
if verbose:
print( 'starting bias substraction' )
bias = {
'top': np.mean(
data[
calibrations[ 'top' ][ 'y' ][ 'min' ] - 100 :
calibrations[ 'top' ][ 'y' ][ 'min' ] ,
calibrations[ 'top' ][ 'x' ][ 'min' ] :
calibrations[ 'top' ][ 'x' ][ 'max' ]
] ,
axis = 0,
),
'down': np.mean(
data[
calibrations[ 'down' ][ 'y' ][ 'min' ] - 100:
calibrations[ 'down' ][ 'y' ][ 'min' ] ,
calibrations[ 'down' ][ 'x' ][ 'min' ] :
calibrations[ 'down' ][ 'x' ][ 'max' ]
] ,
axis = 0,
),
}
mean_bias = bias[ 'down' ]
data[
: ,
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
] = data[
: ,
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
] - mean_bias
if verbose:
print( 'bias substraction finished' )
print( 'starting to flatten the ETA' )
list_ = np.convolve(
np.gradient(
np.mean(
data[
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
] ,
axis = 1,
),
) ,
np.ones( 50 ),
'same' ,
)
fall = utils.consecutive( np.where( list_ < 0.03 * np.min( list_ ) )[0] )
fall = np.array( [
np.argmax( list_ )
] + [
consecutive[0] + np.argmin(
list_[ consecutive[0] : consecutive[-1] ]
) for consecutive in fall if len( consecutive ) > 20 # the value might change
] ).astype( int )
stairs = np.zeros( ( len( fall ) , size_x , 2 ) )
for x in range( size_x ):
stairs[ : fall[0] , x ] = 0 # TODO: put the mean
for i in range( len( fall ) - 1 ):
stairs[ i , x ] = [
np.mean( data[
calibrations[ 'top' ][ 'y' ][ 'max' ] + fall[ i ] : calibrations[ 'top' ][ 'y' ][ 'max' ] + fall[ i + 1 ],
border[ 'x' ][ 'min' ] + x
] ),
fall[i]
]
stairs[ -1 , x ] = [
np.mean( data[
calibrations[ 'top' ][ 'y' ][ 'max' ] + fall[ -1 ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
border[ 'x' ][ 'min' ] + x
] ),
fall[ - 1 ]
]
if verbose:
print( 'ETA flattened' )
print( 'outputting data' )
if output == None:
print( stairs , wavelength )
else:
output_file = pathlib.Path( output )
with shelve.open( str( output_file ) ) as output:
output[ 'data' ] = stairs
output[ 'wavelength' ] = wavelength
if verbose:
print( 'output sent' )
print( '===========================================\
\nend of ETA.py' )