288 lines
7.5 KiB
Python
288 lines
7.5 KiB
Python
import numpy as np
|
|
import utils
|
|
import sys
|
|
from scipy.signal import convolve as sp_convolve
|
|
from scipy.signal import find_peaks
|
|
from scipy.ndimage import rotate
|
|
|
|
if len( sys.argv ) < 2:
|
|
raise Exception( 'this command must have a filename of an ETA fits as an argument' )
|
|
data = utils.load( sys.argv[1] )
|
|
|
|
"""
|
|
find fill points
|
|
"""
|
|
points = []
|
|
|
|
points += utils.find_point( data[ : , 0 ] , 0 ) # x_min
|
|
points += utils.find_point(
|
|
data[ : , data.shape[1] - 1 ],
|
|
data.shape[1] - 1 ,
|
|
) # x_max
|
|
|
|
index_min = 0
|
|
while data.shape[0] - 1 > index_min:
|
|
index_min += 1
|
|
if len( utils.find_point( data[ index_min , : ] , index_min , 'y' ) ) == 3:
|
|
break
|
|
|
|
points.append(
|
|
utils.find_point( data[ index_min , : ] , index_min , 'y' )[1]
|
|
) # y_min
|
|
|
|
index_max = data.shape[0] - 1
|
|
while index_min < index_max:
|
|
index_max -= 1
|
|
if len( utils.find_point( data[ index_max , : ] , index_max , 'y' ) ) == 3:
|
|
break
|
|
|
|
|
|
points.append(
|
|
utils.find_point( data[ index_max , : ] , index_max , 'y' )[1]
|
|
) # y_max
|
|
|
|
small_data = utils.compress( data , 5 )
|
|
|
|
points = utils.big_to_small( points , 5 )
|
|
|
|
# size - 1
|
|
points[ 1 ][ 1 ] -= 1
|
|
points[ 3 ][ 0 ] -= 1
|
|
|
|
# little shift to be inside the light
|
|
points[ 2 ][ 1 ] += 3
|
|
points[ 3 ][ 1 ] += 3
|
|
|
|
"""
|
|
fill data
|
|
"""
|
|
|
|
extremum = []
|
|
for point in points:
|
|
if point[0] < points[2][0]:
|
|
point[0] = points[2][0]
|
|
if point[1] < points[0][1]:
|
|
point[1] = points[0][1]
|
|
taken_points = utils.small_to_big(
|
|
np.array( [
|
|
points[2][0],
|
|
points[0][1],
|
|
] ) + utils.fill(
|
|
small_data[
|
|
points[2][0] : points[3][0] + 1,
|
|
points[0][1] : points[1][1] + 1
|
|
],
|
|
[
|
|
point[0] - points[2][0],
|
|
point[1] - points[0][1],
|
|
],
|
|
1000
|
|
),
|
|
5
|
|
)
|
|
extremum.append( [
|
|
np.min( taken_points[ : , 1 ] ),
|
|
np.max( taken_points[ : , 1 ] ),
|
|
np.min( taken_points[ : , 0 ] ),
|
|
np.max( taken_points[ : , 0 ] ),
|
|
] )
|
|
|
|
border = {
|
|
'x': {
|
|
'min': points[0][1] + extremum[0][1] + 1,
|
|
'max': points[0][1] + extremum[1][0] ,
|
|
},
|
|
'y': {
|
|
'min': points[2][0] + extremum[2][3] + 1,
|
|
'max': points[2][0] + extremum[3][2] ,
|
|
},
|
|
}
|
|
|
|
"""
|
|
label deletion
|
|
"""
|
|
|
|
mean_data = np.convolve(
|
|
np.gradient(
|
|
np.mean(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
|
],
|
|
axis = 0
|
|
)
|
|
),
|
|
np.ones(
|
|
int( 0.01 * (
|
|
border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
|
|
) )
|
|
),
|
|
'same'
|
|
)
|
|
|
|
mean_data -= np.min( mean_data )
|
|
mean_data /= np.max( mean_data )
|
|
|
|
top = utils.consecutive( np.where( mean_data > 0.75 )[0] )
|
|
down = utils.consecutive( np.where( mean_data < 0.25 )[0] )
|
|
|
|
size_top = [ len( list_ ) for list_ in top ]
|
|
size_down = [ len( list_ ) for list_ in down ]
|
|
|
|
label_x = {
|
|
'min': border[ 'x' ][ 'min' ] + top[ np.argmax( size_top ) ][0] ,
|
|
'max': border[ 'x' ][ 'min' ] + down[ np.argmax( size_down ) ][-1]
|
|
}
|
|
|
|
if label_x[ 'min' ] < data.shape[1] // 2:
|
|
if label_x[ 'max' ] < data.shape[1] // 2:
|
|
border[ 'x' ][ 'min' ] = label_x[ 'max' ]
|
|
else:
|
|
raise Exception( 'the label seems to be in the middle of the picture' )
|
|
elif label_x[ 'max' ] > data.shape[1] // 2:
|
|
border[ 'x' ][ 'max' ] = label_x[ 'min' ]
|
|
else:
|
|
raise Exception( 'for an unkown reason, label_x[ \'min\' ] > label_x[ \'max\' ]' )
|
|
|
|
"""
|
|
Rotation
|
|
"""
|
|
|
|
index = border[ 'x' ][ 'min' ]
|
|
gradient = np.gradient(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
|
|
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
|
|
) // 2,
|
|
index
|
|
]
|
|
)
|
|
while np.max( gradient ) - np.min( gradient ) > 5500:
|
|
index += 1
|
|
gradient = np.gradient(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
|
|
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
|
|
) // 2,
|
|
index
|
|
]
|
|
)
|
|
|
|
positions = np.argmax(
|
|
sp_convolve(
|
|
np.gradient(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'min' ] + (
|
|
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
|
|
) // 2 ,
|
|
border[ 'x' ][ 'min' ] : index
|
|
] ,
|
|
axis = 0
|
|
) ,
|
|
np.ones( ( 100 , 1 ) ),
|
|
'valid'
|
|
) ,
|
|
axis = 0
|
|
)
|
|
|
|
list_ = np.arange( 0 , index - border[ 'x' ][ 'min' ] , 1 )
|
|
polyval = np.polyfit( list_ , positions , 1 )
|
|
|
|
angle = np.arctan( polyval[0] )
|
|
|
|
data = rotate( data , angle * ( 180 / np.pi ) ) # utils.rotate does not keep intensity absolute value ? TODO
|
|
|
|
diff_y = int( np.tan( angle ) * ( border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ] ) )
|
|
|
|
border[ 'y' ][ 'min' ] -= diff_y
|
|
border[ 'y' ][ 'max' ] -= diff_y
|
|
|
|
"""
|
|
Calibration
|
|
"""
|
|
|
|
tot_avg = np.mean(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
|
]
|
|
)
|
|
def indicator( list_ ):
|
|
if np.mean( list_ ) > 0.75 * tot_avg:
|
|
return 0
|
|
if np.mean( list_ ) < 0.25 * tot_avg:
|
|
return 1
|
|
list_ -= np.min( list_ )
|
|
list_ /= np.max( list_ )
|
|
positions = np.where( list_ > 0.5 )[0]
|
|
if len( positions ) < 10:
|
|
return 2
|
|
if len( positions ) > 400:
|
|
return 3
|
|
distance = np.mean( positions[ 1 : ] - positions[ : -1 ] )
|
|
if distance < 10:
|
|
return 4
|
|
return 10
|
|
|
|
indicators = np.array( [ indicator( data[ i , border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ] ] ) for i in range( border[ 'y' ][ 'min' ] , border[ 'y' ][ 'max' ] , 1 ) ] )
|
|
|
|
calibration_areas = utils.consecutive( np.where( indicators == 10 )[0] )
|
|
calibration_sizes = [ len( calibration_area ) for calibration_area in calibration_areas ]
|
|
|
|
y_calibrations = [ calibration_areas[ i ] for i in np.argsort( calibration_sizes ) ][ -2 : ]
|
|
calibrations = {
|
|
'top': {
|
|
'x': {
|
|
'min': border['x']['min'],
|
|
'max': border['x']['max'],
|
|
},
|
|
'y': {
|
|
'min': border['y']['min'] + y_calibrations[0][ 0],
|
|
'max': border['y']['min'] + y_calibrations[0][-1],
|
|
},
|
|
},
|
|
'down': {
|
|
'x': {
|
|
'min': border['x']['min'],
|
|
'max': border['x']['max'],
|
|
},
|
|
'y': {
|
|
'min': border['y']['min'] + y_calibrations[1][ 0],
|
|
'max': border['y']['min'] + y_calibrations[1][-1],
|
|
},
|
|
},
|
|
}
|
|
|
|
"""
|
|
stripes curves detection
|
|
"""
|
|
|
|
list_ = data[
|
|
calibrations[ 'top' ][ 'y' ][ 'max' ] : calibrations[ 'down' ][ 'y' ][ 'min' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
|
].copy()
|
|
list_ -= np.min( list_ , axis = 0 )
|
|
list_ /= np.max( list_ , axis = 0 )
|
|
|
|
size = border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ]
|
|
x_stripe = np.arange( border[ 'x' ][ 'min' ] + 1 * size // 4 , border[ 'x' ][ 'min' ] + 3 * size // 4 , 1 ).astype( int )
|
|
y_stripe = np.array( [
|
|
np.where(
|
|
list_[ : , x ] > 0.8
|
|
)[0][0] for x in x_stripe
|
|
] )
|
|
|
|
stripes = [ # list of polyval result for each stripe
|
|
np.polyfit( x_stripe , y_stripe , 2 )
|
|
]
|
|
|
|
# First deformation
|
|
y_diff = np.polyval( stripes[0] , np.arange( 0 , size , 1 ) ).astype( int )
|
|
results = np.zeros( ( list_.shape[1] , list_.shape[0] - np.max( y_diff ) ) )
|
|
for i in range( list_.shape[1] ):
|
|
results[i] = list_[ y_diff[ i ] : list_.shape[0] + y_diff[ i ] - np.max( y_diff ) , i ]
|
|
results = results.transpose()
|
|
|
|
import matplotlib.pyplot as plt
|
|
plt.imshow( results )
|
|
plt.savefig( 'asset/deformation.png' )
|