naroo_reader/classes/science/plate.py

297 lines
8.9 KiB
Python

from numpy import ndarray, ones, argmax, arange, arctan, tan, pi, mean, max, min
from scipy.optimize import curve_fit
from scipy.signal import convolve, find_peaks
from scipy.ndimage import rotate
from classes.science.border import Border
from classes.science.calibration_spectrum import CalibrationSpectrum
from function.utils import find_point, fill, find_peak_low_high
from function.fit import linear
from logging import getLogger
from gettext import gettext as _
class Plate:
"""
Matrix of pixel
"""
def __init__( self , data ):
if not isinstance( data , ndarray ):
raise TypeError( _( 'data must be a ndarray' ) )
if len( data.shape ) != 2:
raise ValueError( _( 'data must be a 2d matrix' ) )
self.data = data
self.set_border()\
.rotate()\
.set_spectrum()\
.set_calibration_spectrum()
def compress( self ):
"""
Compress the plate data to fit the biggest dimension in a 2000
pixels axis and the smallest in a 200 pixels axis at minimum.
Return the compressed data and the compression factor used.
"""
min_factor = max( self.data.shape ) // 2000 # min factor to have a side
# with a maximum of 1000 pixels
max_factor = min( self.data.shape ) // 200 # max factor to have
# a side with a minimum of 100 pixel
if min_factor < max_factor:
factor = int( mean( ( max_factor , min_factor ) ) )
else: # the smallest side will be less than 100 pixels with the
# minimum compression factor
logger = getLogger( 'naroo reader' )
logger.warning(
_( (
'slow compression: ratio between height and width'
' is greater than 10 ({ratio:.2f})'
) ).format(
ratio = max( self.size() ) / min( self.size() )
)
)
factor = max_factor
return self.data[
: : factor,
: : factor,
] , factor
def get_points( self , compressed ):
first_column = find_point(
compressed[
:,
0,
],
0,
)
last_column = find_point(
compressed[
: ,
- 1,
],
compressed.shape[1] - 1,
)
first_line = find_point(
compressed[
0,
:,
] ,
0 ,
'y',
)
if len( first_line ) < 2:
last_column = last_column[ 1 : ]
if len( first_line ) < 3:
first_line = []
else:
first_line = first_line[ 1 : - 1 ]
last_line = find_point(
compressed[
- 1,
: ,
] ,
compressed.shape[0] - 1,
'y' ,
)
if len( last_line ) < 2:
last_column = last_column[ : - 1 ]
if len( last_line ) < 3:
last_line = []
else:
last_line = last_line[ 1 : - 1 ]
return first_column + last_column + first_line + last_line
def rotate( self ):
"""
Auto-rotate to be vertically and horizontally aligned
"""
indexes_max = argmax(
convolve(
self.data[
1 * self.border.y.size() // 4:
3 * self.border.y.size() // 4,
1 * self.border.x.size() // 4:
3 * self.border.x.size() // 4
] ,
ones( ( 500 , 1 ) ),
'valid' ,
) ,
axis = 0,
)
abciss = arange(
1 * self.border.x.size() // 4,
3 * self.border.x.size() // 4
)
fit_result = curve_fit(
linear ,
abciss ,
indexes_max,
)[0]
angle = arctan( fit_result[0] ) * pi / 180 # rad
diff = int( # adjust height border
tan( angle ) * ( self.border.x.size() )
)
self.data = rotate(
self.data,
angle ,
)
self.border.y.min -= diff
self.border.y.max -= diff
return self
def set_border( self ):
"""
Set current border (without area outside the plate)
"""
compressed , factor = self.compress()
points = self.get_points( compressed )
self.border = Border()
self.border.x.min = 0
self.border.x.max = compressed.shape[1] - 1
self.border.y.min = 0
self.border.y.max = compressed.shape[0] - 1
extremum = []
x_half = compressed.shape[1] // 2
y_half = compressed.shape[0] // 2
for index in range( len( points ) ):
point = points[ index ]
point[0] -= int( compressed.shape[0] == point[0] ) # keep in
point[1] -= int( compressed.shape[1] == point[1] ) # range
taken_points = fill(
compressed,
point ,
2000 , # intensity threshold
)
x = [ taken_point[1] for taken_point in taken_points ]
y = [ taken_point[0] for taken_point in taken_points ]
if len( x ) > 5 and len( y ) > 5:
if max( x ) < x_half:
if self.border.x.min < max( x ):
self.border.x.min = max( x ) # biggest min
elif min( x ) > x_half:
# elif to only accept one side
if self.border.x.max > min( x ):
self.border.x.max = min( x ) # smallest max
elif max( y ) < y_half:
if self.border.y.min < max( y ):
self.border.y.min = max( y ) # same
elif min( y ) > y_half:
if self.border.y.max > min( y ):
self.border.y.max = min( y ) # same
offset = 3
self.border.x.min += offset
self.border.y.min += offset
self.border.x.max -= offset
self.border.y.min -= offset
self.border.scale( factor )
return self
def set_calibration_spectrum( self ):
"""
Set calibration sprectrum area
"""
self.calibration_spectrum = CalibrationSpectrum()
def indicator( list_ , matrix ):
"""
Define an indicator which define if the horizontal slice has
a chance to be a part of a calibration
"""
avg = mean( matrix )
if mean( list_ ) > 0.75 * avg:
return 0
if mean( list_ ) < 0.25 * avg:
return 1
positions = where( list_ > mean( list_ ) )[0]
if len( positions ) < 100:
return 2
if len( positions ) > 400:
return 3
distance = mean( positions[ 1 : ] - positions[ : - 1 ] )
if distance < 10:
return 4
return 10
list_ = [
indicator(
self.data[
i ,
self.border.slice()[1],
] ,
self.data[ self.border.slice() ],
) for i in range(
self.border.y.min,
self.border.y.max,
)
]
import matplotlib.pyplot as plt
plt.plot( list_ )
plt.show()
return self
def set_spectrum( self ):
"""
Set spectrum area
"""
self.spectrum = Border()
list_ = convolve(
mean(
self.data[ self.border.slice() ],
axis = 1 ,
) ,
ones( 200 ),
'valid' ,
)
indexes = find_peak_low_high(
list_ ,
( max( list_ ) + mean( list_ ) ) / 2,
)[0]
self.spectrum.y.min = indexes[0] + self.border.y.min + 100
self.spectrum.y.max = indexes[1] + self.border.y.min + 100
import matplotlib.pyplot as plt
plt.imshow( self.data[ self.border.slice() ] , aspect = 'auto' )
plt.show()
list_ = convolve(
mean(
self.data[ self.border.slice() ],
axis = 0 ,
) ,
ones( 200 ),
'valid' ,
)
indexes = find_peak_low_high(
list_ ,
mean( list_ ) + max( list_ ) / 2,
)[0]
self.spectrum.x.min = indexes[0] + self.border.x.min + 100
self.spectrum.x.max = indexes[1] + self.border.x.min + 100
return self
def size( self ):
"""
get plate size
"""
return self.data.shape