naroo_reader/utils.py

285 lines
12 KiB
Python

from astropy.io.fits import open
import cv2
import numpy as np
def load( filename ):
"""
retrieve data from naroo fits
"""
if not isinstance( filename , str ):
raise ValueError( 'the filename must be a string, ' + type( filename ) + ' given' )
hdul = open( filename )
data = hdul[0].data
hdul.close()
return data
def compress( data , factor ):
"""
divide the size of the data by 2**factor
"""
if not isinstance( data , np.ndarray ) and not isinstance( data , list ):
raise ValueError( 'data must be a list, ' + type( data ) + ' given' )
if not isinstance( factor , int ):
raise ValueError( 'factor must be an integer, ' + type( factor ) + ' given' )
for _ in range( factor ):
data = np.compress( [ True , False ] * ( data.shape[1] // 2 ) , data , axis = 1 )
data = np.compress( [ True , False ] * ( data.shape[0] // 2 ) , data , axis = 0 )
return data
def big_to_small( indexes , factor ):
"""
convert a coordinate of a point in the non compressed data to the same coordinate
in the compressed one (there is a loss of information here !)
"""
if not isinstance( indexes , int ) and not isinstance( indexes , list ) and not isinstance( indexes , np.ndarray ):
raise ValueError( 'indexes must be an integer or a list, ' + type( indexes ) + ' given' )
if not isinstance( factor , int ):
raise ValueError( 'factor mus be an integer' )
if isinstance( indexes , int ) or isinstance( indexes , np.ndarray ):
return indexes // ( 2 ** factor )
for i in range( len( indexes ) ):
indexes[i] = big_to_small( indexes[i] , factor )
return indexes
def small_to_big( indexes , factor ):
"""
convert a coordinate of a point in the compressed data to the same coordinate
in the non compressed one
"""
if not isinstance( indexes , int ) and not isinstance( indexes , list ) and not isinstance( indexes , np.ndarray ):
raise ValueError( 'indexes must be an integer or a list, ' + type( indexes ) + ' given' )
if not isinstance( factor , int ):
raise ValueError( 'factor mus be an integer' )
if isinstance( indexes , int ):
return int( indexes * 2 ** factor )
if isinstance( indexes , np.ndarray ):
return ( indexes * 2 ** factor ).astype( int )
for i in range( len( indexes ) ):
indexes[i] = small_to_big( indexes[i] , factor )
return indexes
def check_side( data , point , tolerance ):
"""
give coordinates of all side point of the given point which have an
intensity difference inferior than tolerance
"""
if not isinstance( data , np.ndarray ) and not isinstance( data , list ):
raise ValueError( 'data must be a list, ' + type( data ) + ' given' )
if not isinstance( point , np.ndarray ) and not isinstance( point , tuple ) and not isinstance( point , list ):
raise ValueError( 'point must be a tuple, ' + type( point ) + ' given' )
if not isinstance( tolerance , int ) and not isinstance( tolerance , float ):
raise ValueError( 'tolerance must be a number, ' + type( tolerance ) + ' given' )
positions , intensity = [] , data[ tuple( point ) ]
if 0 <= point[0] < data.shape[0] - 1 and intensity - tolerance <= data[ point[0] + 1 , point[1] ] <= intensity + tolerance:
positions.append( [ point[0] + 1 , point[1] ] )
if 0 < point[0] < data.shape[0] and intensity - tolerance <= data[ point[0] - 1 , point[1] ] <= intensity + tolerance:
positions.append( [ point[0] - 1 , point[1] ] )
if 0 <= point[1] < data.shape[1] - 1 and intensity - tolerance <= data[ point[0] , point[1] + 1 ] <= intensity + tolerance:
positions.append( [ point[0] , point[1] + 1 ] )
if 0 < point[1] < data.shape[1] and intensity - tolerance <= data[ point[0] , point[1] - 1 ] <= intensity + tolerance:
positions.append( [ point[0] , point[1] - 1 ] )
return positions
def fill( data , point , tolerance , limit = 100000 ):
"""
give the coordinate of all points that fill the area with the given tolerance
"""
if not isinstance( data , np.ndarray ) and not isinstance( data , list ):
raise ValueError( 'data must be a list, ' + type( data ) + ' given' )
if not isinstance( point , np.ndarray ) and not isinstance( point , tuple ) and not isinstance( point , list ):
raise ValueError( 'point must be a tuple, ' + type( point ) + ' given' )
if not isinstance( tolerance , int ) and not isinstance( tolerance , float ):
raise ValueError( 'tolerance must be a number, ' + type( tolerance ) + ' given' )
if not isinstance( limit , int ):
raise ValueError( 'limit must be an integer, ' + type( limit ) + ' given' )
taken_point = []
new_points = [ point ]
i = 0
while len( new_points ) != 0 and i < limit:
point = new_points.pop(0)
taken_point.append( point )
for position in check_side( data , point , tolerance ):
if not position in new_points and not position in taken_point:
new_points.append( position )
i += 1
return np.array( taken_point )
def point( index_1 , index_2 , axis = 'x' ):
"""
reorder coordinate
"""
if not isinstance( index_1 , int ):
raise ValueError( 'index_1 must be an integer, ' + type( index_1 ) + ' given' )
if not isinstance( index_2 , int ):
raise ValueError( 'index_2 must be an integer, ' + type( index_2 ) + ' given' )
if not isinstance( axis , str ):
raise ValueError( 'axis must be a string, ' + type( axis ) + ' given' )
if axis not in [ 'x' , 'y' ]:
raise ValueError( 'axis must be "x" or "y", ' + axis + ' given' )
if axis == 'x':
return [ index_2 , index_1 ]
return [ index_1 , index_2 ]
def find_point( list_ , index , axis = 'x' , threshold = 0.5 ):
"""
find the index where to fill in a side
"""
if not isinstance( list_ , list ) and not isinstance( list_ , np.ndarray ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
if not isinstance( index , int ):
raise ValueError( 'index must be an integer, ' + type( index ) + ' given' )
if not isinstance( axis , str ):
raise ValueError( 'axis must be a string, ' + type( axis ) + ' given' )
if axis not in [ 'x' , 'y' ]:
raise ValueError( 'axis must be "x" or "y", ' + axis + ' given' )
if not isinstance( threshold , float ):
raise ValueError( 'threshold must be a float, ' + type( threshold ) + ' given' )
mean = np.mean( list_ )
ampl = np.max( list_ ) - np.min( list_ )
if ampl < mean / 2:
return [ point( index , 0 , axis ) ]
else:
points = []
list_ = np.convolve( list_ , np.ones( 100 ) , 'same' )
list_ -= np.min( list_ )
list_ /= np.max( list_ )
i , inside , size = 0 , False , 0
while i < len( list_ ):
if list_[ i ] > threshold and not inside:
points.append( point( index , i , axis ) )
inside = True
size = 0
elif list_[ i ] < threshold and inside:
size += 1
if size > 0.01 * len( list_ ): # low sensibility
inside = False
i += 1
return points
def consecutive( list_ ):
"""
divide a sorted list of integer by consecutive part
"""
if not isinstance( list_ , list ) and not isinstance( list_ , np.ndarray ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
if len( list_ ) == 0:
return list_
index = last_consecutive( list_ )
if index == len( list_ ) - 1:
return [ list_ ]
return [ list_[ : index + 1 ] ] + consecutive( list_[ index + 1 : ] ) # happy recursion \o/
def last_consecutive( list_ ):
"""
return the last index of the first consecutive list
"""
if not isinstance( list_ , list ) and not isinstance( list_ , np.ndarray ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
first , lower , greater = list_[0] , 0 , len( list_ )
i = lower + ( greater - lower ) // 2
while greater - lower != 0:
i = lower + ( greater - lower ) // 2
if list_[ i ] - first != i: # outside of the consecutive list
greater = i
else:
if i != len( list_ ) - 1:
if list_[ i ] + 1 != list_[ i + 1 ]: # next one is not inside the consecutive list => limit retrieved
break
lower = i
else: # if inside the consecutive list and last element, every element is consecutive
break
return i
def same_value( list_ ):
"""
divide a sorted list of integer by same value part
"""
if not isinstance( list_ , list ) and not isinstance( list_ , np.ndarray ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
if len( list_ ) == 0:
return list_
counter = np.arange( 1 , len( list_ ) )
return np.split( list_ , counter[ list_[ 1 : ] != list_[ : - 1 ] ] )
def last_same_value( list_ ):
"""
return the last index of the first same value list
"""
if not isinstance( list_ , list ) and not isinstance( list_ , np.ndarray ):
raise ValueError( 'list_ must be a list, ' + type( list_ ) + ' given' )
value = list_[0]
return np.argwhere( list_ == value ).max()
def rotate( image , angle ):
"""
rotate the following image by the given angle
"""
height , width = image.shape[ : 2 ]
cX , cY = ( width // 2 , height // 2 )
matrix = cv2.getRotationMatrix2D( ( cX , cY ) , angle , 1 )
return cv2.warpAffine( image , matrix , ( width , height ) , flags = cv2.INTER_NEAREST )
def retrieve_peaks( data , window_size = 5 , error_coef = 1.05 , max_window_size = 30 , min_successive = 2 ):
"""
get peak position from a 1D data
"""
spectral_energy = np.log( data ** 2 )
error_thr = error_coef / np.median( spectral_energy )
average_window = np.convolve(
spectral_energy ,
np.ones( window_size ),
'same' ,
) / window_size
average_energy = np.mean( average_window )
peaks = np.where(
average_window / average_energy ** 2 > error_thr
)[0]
peaks = [
np.mean( peak ) for peak in consecutive( peaks )
]
successive = 0
while successive < min_successive and window_size < max_window_size:
average_window = np.convolve(
spectral_energy ,
np.ones( window_size ),
'same' ,
) / window_size
average_energy = np.mean( average_window )
new_peaks = np.where(
average_window / average_energy ** 2 > error_thr
)[0]
new_peaks = [
np.mean( peak ) for peak in consecutive( new_peaks )
]
if len( peaks ) == len( new_peaks ):
successive += 1
else:
successive = 0
peaks = new_peaks
window_size += 1
return peaks
def near_value( list_ , value ):
"""
return indexes of the list whith a value nearest of the given
one when crossing it
"""
change = np.where( np.diff( np.sign( list_ - value ) ) != 0 ) # sign change
index = change + (
value - list_[ change ]
) / (
list_[ change + np.ones_like( change ) ] - list_[ change ]
) # interpolation
index = np.append( index , np.where( list_ == value ) )
return np.round( np.sort( index ) ).astype( int ) # triage