532 lines
17 KiB
Python
532 lines
17 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from scipy.signal import medfilt , find_peaks
|
|
from scipy.optimize import curve_fit
|
|
import utils
|
|
import sys
|
|
import shelve
|
|
import pathlib
|
|
from scipy.ndimage import rotate
|
|
|
|
cache , filename , output , calibration , verbose , no_cache = '' , None , None , None , False, False
|
|
if len( sys.argv ) < 2:
|
|
raise Exception( 'spectrum.py: type \'spectrum.py -h\' for more information' )
|
|
|
|
argv , i = sys.argv[ 1 : ] , 0
|
|
while i < len( argv ):
|
|
arg = argv[ i ]
|
|
if arg[0] == '-':
|
|
if len( arg ) < 2:
|
|
raise Exception( 'spectrum.py: unknown argument, type \'ETA.py -h\' for more information' )
|
|
if arg[1] != '-':
|
|
if arg == '-h':
|
|
arg = '--help'
|
|
elif arg == '-v':
|
|
arg = '--version'
|
|
elif arg == '-l':
|
|
arg = '--verbose'
|
|
elif arg == '-n':
|
|
arg == '--no-cache'
|
|
elif arg == '-c':
|
|
if i == len( sys.argv ) - 1:
|
|
raise Exception( 'spectrum.py: cache have to take a value' )
|
|
argv[ i + 1 ] = '--cache=' + argv[ i + 1 ]
|
|
i += 1
|
|
continue
|
|
elif arg == '-o':
|
|
if i == len( sys.argv ) - 1:
|
|
raise Exception( 'spectrum.py: output have to take a value' )
|
|
argv[ i + 1 ] = '--output=' + argv[ i + 1 ]
|
|
i += 1
|
|
continue
|
|
elif arg == '-a':
|
|
if i == len( sys.argv ) - 1:
|
|
raise Exception( 'spectrum.py: calibration have to take a value' )
|
|
argv[ i + 1 ] = '--calibration=' + argv[ i + 1 ]
|
|
i += 1
|
|
continue
|
|
else:
|
|
raise Exception( 'spectrum.py: unknown argument "' + arg + '", type \'spectrum.py -h\' for more information' )
|
|
if arg[1] == '-': # not elif because arg can change after last if
|
|
if arg == '--help':
|
|
print( 'spectrum.py [options...] filename\
|
|
\n -a --calibration calibration file, default to no calibration.\
|
|
\n No calibration means no wavelength interpolation\
|
|
\n -c --cache use given cache\
|
|
\n -h --help show this help and quit\
|
|
\n -n --no-cache do not use cache and rewrite it\
|
|
\n -o --output output file, default to standard output\
|
|
\n -v --version show version number and quit\
|
|
\n -l --verbose show more information to help debugging\
|
|
\n\
|
|
\nParse a naroo ETA fits' )
|
|
exit()
|
|
elif arg == '--version':
|
|
print( '0.2' )
|
|
exit()
|
|
elif arg == '--verbose':
|
|
verbose = True
|
|
elif arg == '--no-cache':
|
|
no_cache = True
|
|
elif len( arg ) > 8 and arg[ : 8 ] == '--cache=':
|
|
cache = arg[ 8 : ]
|
|
elif len( arg ) > 9 and arg[ : 9 ] == '--output=':
|
|
output = arg[ 9 : ]
|
|
elif len( arg ) > 14 and arg[ : 14 ] == '--calibration=':
|
|
calibration = arg[ 14 : ]
|
|
else:
|
|
raise Exception( 'spectrum.py: unknown argument "' + arg + '", type \'ETA.py -h\' for more information' )
|
|
else:
|
|
raise Exception( 'spectrum.py: this exception should never be raised' )
|
|
else:
|
|
filename = arg
|
|
i += 1
|
|
if filename == None:
|
|
raise Exception( 'spectrum.py: filename should be given' )
|
|
|
|
if verbose:
|
|
cache, filename, output, calibration, verbose
|
|
print( f'spectrum.py: launching now with parameters:\
|
|
\n --filename: {filename}\
|
|
\n --cache: {cache} ( default: \'\' )\
|
|
\n --calibration: {calibration} ( default to None )\
|
|
\n --output: {output} ( default to None )\
|
|
\n --verbose: True ( default to False)\
|
|
\n\
|
|
\n===========================================' )
|
|
# TODO: check in advance file to check if exists or writeable
|
|
|
|
data = utils.load( filename )
|
|
if verbose:
|
|
print( 'data loaded' )
|
|
|
|
cache_file = pathlib.Path( cache )
|
|
|
|
if cache_file.is_file() and not no_cache:
|
|
if verbose:
|
|
print( 'using cache' )
|
|
with shelve.optn( str( cache_file ) ) as cache:
|
|
for key in [ 'data' , 'border' , 'calibrations' ]:
|
|
if key not in cache:
|
|
raise Exception( 'spectrum.py: missing data in cache file' )
|
|
data = cache[ 'data' ]
|
|
border = cache[ 'border']
|
|
spectrum = cache[ 'spectrum' ]
|
|
calibrations = cache[ 'calibrations' ]
|
|
else:
|
|
if verbose:
|
|
print( 'not using cache' )
|
|
print( 'starting first zoom' )
|
|
"""
|
|
find fill point
|
|
"""
|
|
points = []
|
|
|
|
points += utils.find_point( data[ : , 0 ] , 0 ) # x_min
|
|
points += utils.find_point(
|
|
data[ : , data.shape[1] - 1 ],
|
|
data.shape[1] - 1
|
|
) # x_max
|
|
|
|
index_min = 0
|
|
while data.shape[0] - 1 > index_min:
|
|
index_min += 1
|
|
if len( utils.find_point(
|
|
data[ index_min , : ],
|
|
index_min ,
|
|
'y' ,
|
|
) ) == 3:
|
|
break
|
|
points.append(
|
|
utils.find_point(
|
|
data[ index_min , : ],
|
|
index_min ,
|
|
'y' ,
|
|
)[1]
|
|
) # y_min
|
|
|
|
index_max = data.shape[0] - 1
|
|
while index_min < index_max:
|
|
index_max -= 1
|
|
if len( utils.find_point(
|
|
data[ index_max , : ],
|
|
index_max ,
|
|
'y' ,
|
|
) ) == 3:
|
|
break
|
|
|
|
points.append(
|
|
utils.find_point(
|
|
data[ index_max , : ],
|
|
index_max ,
|
|
'y' ,
|
|
)[1]
|
|
)
|
|
|
|
small_data = utils.compress( data , 5 )
|
|
points = utils.big_to_small( points , 5 )
|
|
|
|
# size - 1
|
|
points[ 1 ][ 1 ] -= 1
|
|
points[ 3 ][ 0 ] -= 1
|
|
|
|
# little shift to be inside the light
|
|
points[ 2 ][ 1 ] += 3
|
|
points[ 3 ][ 1 ] += 3
|
|
|
|
"""
|
|
fill data
|
|
"""
|
|
|
|
extremum = []
|
|
for point in points:
|
|
if point[0] < points[2][0]:
|
|
point[0] = points[2][0]
|
|
if point[1] < points[0][1]:
|
|
point[1] = points[0][1]
|
|
taken_points = utils.small_to_big(
|
|
np.array( [
|
|
points[2][0],
|
|
points[0][1],
|
|
] ) + utils.fill(
|
|
small_data[
|
|
points[2][0] : points[3][0] + 1,
|
|
points[0][1] : points[1][1] + 1,
|
|
] ,
|
|
[
|
|
point[0] - points[2][0],
|
|
point[1] - points[0][1],
|
|
] ,
|
|
1000,
|
|
),
|
|
5,
|
|
)
|
|
extremum.append( [
|
|
np.min( taken_points[ : , 1 ] ),
|
|
np.max( taken_points[ : , 1 ] ),
|
|
np.min( taken_points[ : , 0 ] ),
|
|
np.max( taken_points[ : , 0 ] ),
|
|
] )
|
|
|
|
border = {
|
|
'x': {
|
|
'min': points[0][1] + extremum[0][1] + 1,
|
|
'max': points[0][1] + extremum[1][0] ,
|
|
},
|
|
'y': {
|
|
'min': points[2][0] + extremum[2][3] + 1,
|
|
'max': points[2][0] + extremum[3][2] ,
|
|
},
|
|
}
|
|
|
|
if verbose:
|
|
print( 'first zoom finished' )
|
|
print( 'starting rotation' )
|
|
print( 'retrieving current angle' )
|
|
|
|
"""
|
|
Rotation
|
|
"""
|
|
|
|
gauss = lambda x , sigma , mu , a , b : a * (
|
|
1 / ( sigma * np.sqrt( 2 * np.pi ) )
|
|
) * np.exp(
|
|
- ( x - mu ) ** 2 / ( 2 * sigma ** 2 )
|
|
) + b
|
|
guess_params = [
|
|
1 ,
|
|
( border[ 'x' ][ 'max' ] - border[ 'x' ][ 'min' ] ) / 2,
|
|
np.mean( data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
|
] ) ,
|
|
np.mean( data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ]
|
|
] ) ,
|
|
]
|
|
number = 1000
|
|
position_peaks = np.zeros( number )
|
|
indexes = np.linspace( border[ 'x' ][ 'min' ] , border[ 'x' ][ 'max' ] , number , dtype = int )
|
|
for i in range( number ):
|
|
x = np.arange(
|
|
border[ 'y' ][ 'min' ],
|
|
border[ 'y' ][ 'max' ],
|
|
1 ,
|
|
)
|
|
y = data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
indexes[ i ]
|
|
]
|
|
|
|
try:
|
|
position_peaks[ i ] = curve_fit(
|
|
gauss ,
|
|
x ,
|
|
y ,
|
|
guess_params,
|
|
)[0][1]
|
|
except:
|
|
position_peaks[ i ] = 0
|
|
position_peaks = medfilt(
|
|
position_peaks[ np.where( position_peaks != 0 ) ],
|
|
11 ,
|
|
)
|
|
abciss = np.arange(
|
|
len( position_peaks )
|
|
)[ np.where( position_peaks ) ]
|
|
polyval = np.polyfit( abciss , position_peaks , 1 )
|
|
|
|
angle = np.arctan( polyval[0] )
|
|
|
|
if verbose:
|
|
print( 'current angle retrieved: ' + str( angle ) )
|
|
print( 'starting image rotation' )
|
|
|
|
data = rotate( data , angle * ( 180 / np.pi ) ) # utils.rotate does not keep intenisty absolute value TODO
|
|
|
|
if verbose:
|
|
print( 'image rotation finished' )
|
|
print( 'rotation finished' )
|
|
print( 'starting spectrum isolation' )
|
|
print( 'starting y border detection' )
|
|
|
|
"""
|
|
Spectrum y
|
|
"""
|
|
|
|
list_ = np.mean(
|
|
data[
|
|
border[ 'y' ][ 'min' ] : border[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ],
|
|
] ,
|
|
axis = 1,
|
|
)
|
|
indexes = utils.near_value(
|
|
list_ ,
|
|
np.mean( list_ ) + ( np.max( list_ ) - np.mean( list_ ) ) / 10,
|
|
) + border[ 'y' ][ 'min' ]
|
|
|
|
spectrum = {
|
|
'y': {
|
|
'min': indexes[0],
|
|
'max': indexes[1],
|
|
},
|
|
}
|
|
|
|
if verbose:
|
|
print( 'y border detection finished' )
|
|
print( 'starting x border detection' )
|
|
|
|
"""
|
|
Spectrum x
|
|
"""
|
|
|
|
list_ = np.convolve(
|
|
np.mean(
|
|
data[
|
|
spectrum[ 'y' ][ 'min' ] : spectrum[ 'y' ][ 'max' ],
|
|
border[ 'x' ][ 'min' ] : border[ 'x' ][ 'max' ] ,
|
|
] ,
|
|
axis = 0,
|
|
) ,
|
|
np.ones( 200 ),
|
|
'valid' ,
|
|
)
|
|
abciss = np.arange(
|
|
border[ 'x' ][ 'min' ] + 100,
|
|
border[ 'x' ][ 'max' ] - 99 ,
|
|
1 ,
|
|
)
|
|
indexes = utils.near_value(
|
|
list_ ,
|
|
np.min( list_ ) + ( np.mean( list_ ) - np.min( list_ ) ),
|
|
)
|
|
factor = 1
|
|
while len( indexes ) == 2:
|
|
factor += 1
|
|
indexes = utils.near_value(
|
|
list_ ,
|
|
np.min( list_ ) + ( np.mean( list_ ) - np.min( list_ ) ) / factor,
|
|
)
|
|
factor -= 1
|
|
indexes = utils.near_value(
|
|
list_ ,
|
|
np.min( list_ ) + ( np.mean( list_ ) - np.min( list_ ) ) / factor,
|
|
) + border[ 'x' ][ 'min' ] + 100 # valid convolution only
|
|
|
|
spectrum[ 'x' ] = {
|
|
'min': indexes[ 0 ],
|
|
'max': indexes[ 1 ],
|
|
}
|
|
|
|
if verbose:
|
|
print( 'x border detection finished' )
|
|
print( 'spectrum isolation finished' )
|
|
print( 'starting calibration isolation' )
|
|
|
|
"""
|
|
Calibration
|
|
"""
|
|
|
|
def indicator( list_ ):
|
|
"""
|
|
define an indicator which define if the horizontal slice has a
|
|
chance to be a part of a calibration
|
|
"""
|
|
list_ = list_.copy() # do not change data
|
|
list_ -= np.min( list_ ) # min 0
|
|
list_ /= np.max( list_ ) # max 1
|
|
|
|
amplitude = np.mean( list_ ) # the lower the better
|
|
peaks = find_peaks(
|
|
list_ ,
|
|
height = np.mean( list_ ) + ( 1 - np.mean( list_ ) ) / 2,
|
|
)[0]
|
|
number = 0.01 + abs( len( peaks ) - 90 ) # the lower the better
|
|
intensity = np.sum( list_[ peaks ] )
|
|
return intensity / ( amplitude ** 2 * number )
|
|
|
|
indicators = np.convolve(
|
|
np.array( [
|
|
indicator(
|
|
data[
|
|
i ,
|
|
spectrum[ 'x' ][ 'min' ] : spectrum[ 'x' ][ 'max' ],
|
|
],
|
|
) for i in range(
|
|
border[ 'y' ][ 'min' ],
|
|
border[ 'y' ][ 'max' ],
|
|
1 ,
|
|
)
|
|
] ) ,
|
|
np.ones( 10 ),
|
|
'valid' ,
|
|
)
|
|
indicators /= np.max( indicators )
|
|
calibration_areas = utils.consecutive( np.where( indicators > 1 / 1000 )[0] )
|
|
calibration_areas = [
|
|
[ calibration_area for calibration_area in calibration_areas if (
|
|
calibration_area[0] < (
|
|
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
|
|
) / 2
|
|
) ],
|
|
[ calibration_area for calibration_area in calibration_areas if (
|
|
calibration_area[0] > (
|
|
border[ 'y' ][ 'max' ] - border[ 'y' ][ 'min' ]
|
|
) / 2
|
|
) ],
|
|
]
|
|
calibration_sizes = [
|
|
[ len( calibration_area ) for calibration_area in calibration_areas[0] ],
|
|
[ len( calibration_area ) for calibration_area in calibration_areas[1] ],
|
|
]
|
|
calibrations_y = [
|
|
calibration_areas[0][
|
|
np.argmax( calibration_sizes[0] )
|
|
],
|
|
calibration_areas[1][
|
|
np.argmax( calibration_sizes[1] )
|
|
],
|
|
]
|
|
|
|
calibrations = {
|
|
'top': {
|
|
'x': {
|
|
'min': spectrum[ 'x' ][ 'min' ],
|
|
'max': spectrum[ 'x' ][ 'max' ],
|
|
},
|
|
'y': {
|
|
'min': border[ 'y' ][ 'min' ] + calibrations_y[0][0],
|
|
'max': border[ 'y' ][ 'min' ] + calibrations_y[0][-1],
|
|
},
|
|
},
|
|
'down': {
|
|
'x': {
|
|
'min': spectrum[ 'x' ][ 'min' ],
|
|
'max': spectrum[ 'x' ][ 'max' ],
|
|
},
|
|
'y': {
|
|
'min': border[ 'y' ][ 'min' ] + calibrations_y[1][0],
|
|
'max': border[ 'y' ][ 'min' ] + calibrations_y[1][-1],
|
|
},
|
|
}
|
|
}
|
|
|
|
if verbose:
|
|
print( 'calibration isolation finished' )
|
|
|
|
if not cache_file.exists() and not no_cache:
|
|
if verbose:
|
|
print( 'writing result in cache' )
|
|
with shelve.open( str( cache_file ) ) as cache:
|
|
cache[ 'data' ] = data
|
|
cache[ 'border' ] = border
|
|
cache[ 'spectrum' ] = spectrum
|
|
cache[ 'calibrations' ] = calibrations
|
|
if verbose:
|
|
print( 'cache saved' )
|
|
|
|
"""
|
|
Calibration
|
|
"""
|
|
|
|
if calibration != None:
|
|
if verbose:
|
|
print( 'starting calibration' )
|
|
|
|
mean_up = np.mean( data[
|
|
calibrations[ 'top' ][ 'y' ][ 'min' ] : calibrations[ 'top' ][ 'y' ][ 'max' ],
|
|
calibrations[ 'top' ][ 'x' ][ 'min' ] : claibrations[ 'top' ][ 'x' ][ 'max' ]
|
|
] , axis = 0 )
|
|
mean_up = np.mean( data[
|
|
calibrations[ 'down' ][ 'y' ][ 'min' ] : calibrations[ 'down' ][ 'y' ][ 'max' ],
|
|
calibrations[ 'down' ][ 'x' ][ 'min' ] : claibrations[ 'down' ][ 'x' ][ 'max' ]
|
|
] , axis = 0 )
|
|
peaks_up = np.array(
|
|
utils.retrieve_peaks(
|
|
mean_up ,
|
|
window_size = 1 ,
|
|
max_window_size = 1,
|
|
) ,
|
|
dtype = int,
|
|
)
|
|
peaks_down = np.array(
|
|
utils.retrieve_peaks(
|
|
mean_down ,
|
|
window_size = 1 ,
|
|
max_window_size = 1,
|
|
) ,
|
|
dtype = int,
|
|
)
|
|
|
|
if verbose:
|
|
print( 'calibration finished' )
|
|
|
|
if verbose:
|
|
print( 'starting output writing' )
|
|
|
|
if output == None:
|
|
print( np.mean(
|
|
data[
|
|
spectrum[ 'y' ][ 'min' ] : spectrum[ 'y' ][ 'max' ],
|
|
specturm[ 'x' ][ 'min' ] : spectrum[ 'x' ][ 'max' ],
|
|
] ,
|
|
axis = 0,
|
|
) )
|
|
else:
|
|
if verbose:
|
|
print( 'storing result in ' + output )
|
|
output_file = pathlib.Path( output )
|
|
with shelve.open( str( output_file ) ) as output:
|
|
output[ 'data' ] = np.mean(
|
|
data[
|
|
spectrum[ 'y' ][ 'min' ] : spectrum[ 'y' ][ 'max' ],
|
|
spectrum[ 'x' ][ 'min' ] : spectrum[ 'x' ][ 'max' ],
|
|
] ,
|
|
axis = 0,
|
|
)
|
|
if verbose:
|
|
print( 'output writing finished' )
|
|
print( '===========================================\
|
|
\nend of spectrum.py' )
|